• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 146
  • 49
  • 23
  • 15
  • 11
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 279
  • 279
  • 245
  • 58
  • 43
  • 40
  • 39
  • 39
  • 34
  • 30
  • 30
  • 30
  • 30
  • 29
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Output Feedback Bilateral Teleoperation with Force Estimation in the Presence of Time Delays

Daly, John Michael January 2010 (has links)
This thesis presents a novel bilateral teleoperation algorithm for n degree of freedom nonlinear manipulators connected through time delays. Teleoperation has many practical uses, as there are many benefits that come from being able to operate machines from a distance. For instance, the ability to send a remote controlled robotic vehicle into a hazardous environment can be a great asset in many industrial applications. As well, the field of remote medicine can benefit from these technologies. A highly skilled surgeon could perform surgery on a patient who is located in another city, or even country. Earth to space operations and deep sea exploration are other areas where teleoperation is quite useful. Central to the approach presented in this work is the use of second order sliding mode unknown input observers for estimating the external forces acting on the manipulators. The use of these observers removes the need for both velocity and force sensors, leading to a lower cost hardware setup that provides all of the advantages of a position-force teleoperation algorithm. Stability results for this new algorithm are presented for several cases. Stability of each of the master and slave sides of the teleoperation system is demonstrated, showing that the master and slave are both stabilized by their respective controllers when the unknown input observers are used for state and force estimation. Additionally, closed loop stability results for the teleoperation system connected to a variety of slave side environments are presented. Delay-independent stability results for a linear spring-damper environment as well as a general finite-gain stable nonlinear environment are given. Delay-dependent stability results for the case where the slave environment is a liner spring-damper and the delays are commensurate are also presented. As well, stability results for the closed loop under the assumption that the human operator is modeled as a finite-gain stable nonlinear environment are given. Following the theoretical presentation, numerical simulations illustrating the algorithm are presented, and experimental results verifying the practical application of the approach are given.
92

Design and construction of a bidirectional DCDC converter for an EV application

Hedlund, Magnus January 2010 (has links)
A Sliding Mode Control System for a Bidirectional DCDC Converter was designed and a low voltage prototype was constructed. The control system based its decisions solely on the latest available measurements, which improves performance when changing operative quadrant, since no memory needs reinitializing (such as for PI and state prediction methods). A boost control philosophy was presented, based on a current source approximation. The control was found to be stable without steady-state errors when the variance of the input/output dynamics was high. The target application for the DCDC Converter is an EV (Electric Vehicle) with a flywheel driveline, which puts additional requirements of the converter. Among these are current and voltage control, bidirectionality, and a broad input voltage range. Simulations were performed in Simulink prior to physical implementation, proving functionality of the proposed control system. The physical implementation of the control was done on a digital signal processor with code compiled from C. A median filter was designed to increase measurement efficiency for the current sensors which had shot-like noise distortions.
93

Robotstyrning med metoden Sliding Mode Control / Missile control using the Sliding Mode Control methodology

Sigfridsson, Jenny, Frisk, Josefin January 2005 (has links)
The task in this thesis is the steering of one of Saab Bofors Dynamics robots using Sliding Mode Control, a method they never used before. The robot constitutes a system which in addition to perturbations and uncertainties due to modeling imprecision, hold the difficulty of being highly time variant. In order to be able to keep required performance with uncertainties and modeling imprecision present, the use of robust control methods like Sliding Mode Control is necessary. SMC is based on the states of the system being forced to stay on or in the direct vicinity of a hyper plane in the state space which is chosen in a way that gives the system dynamics desired properties. Other advantages with sliding mode are reduced order dynamics on the switching surface and total insensitivity to some uncertainties and perturbations. The existing metod for controlling the robot is Linear Quadratic Control. To evaluate the SMC-methodology and compare it with the existing solution simulations using SMC and LQ-control are made with uncertainties and modeling imprecision. Our tests show that a control law based on SMC is robust and seems to be a very good alternative to the existing solution.
94

Output Feedback Bilateral Teleoperation with Force Estimation in the Presence of Time Delays

Daly, John Michael January 2010 (has links)
This thesis presents a novel bilateral teleoperation algorithm for n degree of freedom nonlinear manipulators connected through time delays. Teleoperation has many practical uses, as there are many benefits that come from being able to operate machines from a distance. For instance, the ability to send a remote controlled robotic vehicle into a hazardous environment can be a great asset in many industrial applications. As well, the field of remote medicine can benefit from these technologies. A highly skilled surgeon could perform surgery on a patient who is located in another city, or even country. Earth to space operations and deep sea exploration are other areas where teleoperation is quite useful. Central to the approach presented in this work is the use of second order sliding mode unknown input observers for estimating the external forces acting on the manipulators. The use of these observers removes the need for both velocity and force sensors, leading to a lower cost hardware setup that provides all of the advantages of a position-force teleoperation algorithm. Stability results for this new algorithm are presented for several cases. Stability of each of the master and slave sides of the teleoperation system is demonstrated, showing that the master and slave are both stabilized by their respective controllers when the unknown input observers are used for state and force estimation. Additionally, closed loop stability results for the teleoperation system connected to a variety of slave side environments are presented. Delay-independent stability results for a linear spring-damper environment as well as a general finite-gain stable nonlinear environment are given. Delay-dependent stability results for the case where the slave environment is a liner spring-damper and the delays are commensurate are also presented. As well, stability results for the closed loop under the assumption that the human operator is modeled as a finite-gain stable nonlinear environment are given. Following the theoretical presentation, numerical simulations illustrating the algorithm are presented, and experimental results verifying the practical application of the approach are given.
95

Sensorless Robust Sliding Mode Speed Control of Permanent Magnet Synchronous Motor

Hsu, Chih-hung 30 August 2010 (has links)
Sliding mode controllers (SMC) with time delay and a rotor position observer are designed for the sensorless speed control of permanent magnet synchronous motor (PMSM) are proposed in this paper. Based on field-oriented principle, a flux SMC is designed to achieve quick flux control. And then a speed SMC with time delay is presented and compared with PI controller in the direct torque control framework. The effectiveness of the proposed control scheme under the load disturbance and parameter uncertainties is verified by simulation results.
96

Design of Adaptive Sliding Mode Controllers for Mismatched Perturbed Systems with Application to Underactuated Systems

Ho, Chao-Heng 25 July 2011 (has links)
A methodology of designing an adaptive sliding mode controller for a class of nonlinear systems with matched and mismatched perturbations is proposed in this thesis. A specific designed sliding surface function is presented first, whose coefficients are determined by using Lyapunov stability theorem and linear matrix inequality (LMI) optimization technique. Without requiring the upper bounds of matched perturbations, the controller with adaptive mechanisms embedded is also designed by using Lyapunov stability theorem. The proposed control scheme not only can drive the trajectories of the controlled systems reach sliding surface in finite time, but also is able to suppress the mismatched perturbations when the controlled systems are in the sliding mode, and achieve asymptotic stability. In addition, the proposed control scheme can be directly applied to a class of underactuated systems. A numerical example and a practical experiment are given for demonstrating the feasibility of the proposed control scheme.
97

Sliding Mode Control Design for Mismatched Uncertain Switched Systems

Liu, Hong-Yi 15 February 2012 (has links)
Based on the Lyapunov stability theorem, a sliding mode control design methodology is proposed in this thesis for a class of perturbed switched systems. The control of the systems is rest restricted to switching between two different constant values. New sliding mode reaching conditions are proposed for the controllers so that the controlled systems can enter the sliding mode in finite time. Once the switched control system is in the sliding mode, the stability of the system is guaranteed by choosing a suitable sliding surface. In addition, a method for alleviating the infinite switching phenomenon is also provided in this thesis. Finally, a numerical and a practical example with computer simulation results are given for demonstrating the feasibility of the proposed control scheme.
98

ACTIVE SUSPENSION CONTROL WITH DIRECT-DRIVE TUBULAR LINEAR BRUSHLESS PERMANENT-MAGNET MOTOR

Lee, Seungho 16 January 2010 (has links)
Recently, active suspension has been applied to many commercial automobiles. To develop the control algorithm for active suspension, a quarter-car test bed was built by using a direct-drive tubular linear brushless permanent-magnet motor (LBPMM) as a force-generating component. Two accelerometers and a linear variable differential transformer (LVDT) are used in this quarter-car test bed. Three pulse-width-modulation (PWM) amplifiers supply the currents in three phases. Simulated road disturbance is generated by a rotating cam. Modified lead-lag control, linear-quadratic (LQ) servo control with a Kalman filter, and the fuzzy control methodologies were implemented for active-suspension control. In the case of fuzzy control, asymmetric membership functions were introduced. This controller could attenuate road disturbance by up to 78%. Additionally, a sliding-mode controller (SMC) is developed with a different approach from the other three control methodologies. While SMC is developed for the position control, the other three controllers are developed for the velocity control. SMC showed inferior performance due to the drawback of the implemented chattering-proof method. Both simulation and experimental results are presented to demonstrate the effectiveness of these four control methodologies.
99

Sliding-Mode Quantization Theory with Applications to Controller Designs of a Class-D Amplifier and a Synchronous Buck Converter

Tseng, Ming-Hung 24 July 2006 (has links)
The systems which contain coarsely quantized signals are commonly found in applications where the actuators and/or sensors can only output a finite number of levels. This thesis focuses on the problem of synthesizing a finite-level control force for a certain control task, first presenting a systematic design method based on the theory of sliding modes and then applying it to the designs of the class-D audio amplifier and synchronous buck converter. At the first part, a novel three-level modulation technique for a class-D audio amplifier is designed by the sliding mode control theory. The simulated and experimental results conform to the excellent performance of this three-level modulation scheme. In particular, the proposed modulation scheme improves the poor efficiency of a conventional two-level class-D audio amplifier when the audio input signal is small, also excludes the output LC filter. The experiment shows that the designed three-level class-D amplifier achieves a minimum total harmonic distortion plus noise of 0.039% and an efficiency of 85.18%. At the second part, the controller of a synchronous buck converter is designed. The proposed self-oscillating controller stabilizes the buck converter in sliding mode, without the need of a triangular wave generator like the conventional PWM method. A 12V/1.5V synchronous buck converter with proposed control is built in the laboratory. The experiment shows 0.66% of the static output ripple and 3% of the load regulation error in response to the 15A step change of the load current at a slew rate of 50A/£gs.
100

Modeling and control of network traffic for performance and secure communications

Xiong, Yong 17 February 2005 (has links)
The objective of this research is to develop innovative techniques for modeling and control of network congestion. Most existing network controls have discontinuous actions, but such discontinuity in control actions is commonly omitted in analytical models, and instead continuous models were widely adopted in the literature. This approximation works well under certain conditions, but it does cause significant discrepancy in creating robust, responsive control solutions for congestion management. In this dissertation, I investigated three major topics. I proposed a generic discontinuous congestion control model and its design methodology to guarantee asymptotic stability and eliminate traffic oscillation, based on the sliding mode control (SMC) theory. My scheme shows that discontinuity plays a crucial role in optimization of the I-D based congestion control algorithms. When properly modeled, the simple I-D control laws can be made highly robust to parameter and model uncertainties. I discussed applicability of this model to some existing flow or congestion control schemes, e.g. XON/XOFF, rate and window based AIMD, RED, etc. It can also be effectively applied to design of detection and defense of distributed denial of service (DDoS) attacks. DDoS management can be considered a special case of the flow control problem. Based on my generic discontinuous congestion control model, I developed a backward-propagation feedback control strategy for DDoS detection and defense. It not only prevents DDoS attacks but also provides smooth traffic and bounded queue size. Another application of the congestion control algorithms is design of private group communication networks. I proposed a new technique for protection of group communications by concealment of sender-recipient pairs. The basic approach is to fragment and disperse encrypted messages into packets to be transported along different paths, so that the adversary cannot efficiently determine the source/recipient of a message without correct ordering of all packets. Packet flows among nodes are made balanced, to eliminate traffic patterns related to group activities. I proposed a sliding window-based flow control scheme to control transmission of payload and dummy packets. My algorithms allow flexible tradeoff between traffic concealment and performance requirement.

Page generated in 0.0755 seconds