• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • 1
  • 1
  • Tagged with
  • 11
  • 11
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

System modeling and controller designs for a Peltier-based thermal device in microfluidic application

Jiang, Jingbo 06 1900 (has links)
A custom-made Peltier-based thermal device is designed to perform miniaturized bio-molecular reactions in a microfluidic platform for medical diagnostic tests, especially the polymerase chain reaction for DNA amplification. The cascaded two-stage device is first approximated by multiple local linear models whose parameters are obtained by system identification. A decentralized switching controller is proposed, where two internal model-based PI controllers are used in local stabilizations and PD and PI controllers are applied during transitions respectively. Couplings and drift are further reflected into the controllers. Desired temperature tracking performance on the transition speed and overshoot is achieved, and the feasibility of the Peltier device in a microfluidic platform is further validated by the successful applications of viral detection. To achieve fast and smooth transition while avoiding tuning by trial-and-errors, a nonlinear model is developed based on the first principles, whose parameters are partially calculated from empirical rules and partially determined by open-loop and closed-loop experimental data. Two novel nonlinear controllers are designed based on the nonlinear model. The first controller extends the input-to-state feedback linearization technique to a class of nonlinear systems that is affine on both the control inputs and the square of control inputs (including the Peltier system). Additional local high gain controllers are introduced to reduce the steady-state errors due to parameter uncertainty. The second controller is a time-based switching controller which switches between nonlinear pseudo-PID/ state feedback controllers and local PI controllers. Calculation burden is reduced and steady-state error is minimized using a PI controller locally, while fast and smooth transition is achieved by the nonlinear counterpart. The robustness of the controller is verified in simulation under worse case scenarios. Both simulation and experimental results validated the effectiveness of the two nonlinear controllers. The proposed linear/ nonlinear, switching/ non-switching controllers provide different options for the Peltier-based thermal applications. The scalability and the parameter updating capability of the nonlinear controllers facilitate the extension of the Peltier device to other microfluidic applications. / Controls
2

System modeling and controller designs for a Peltier-based thermal device in microfluidic application

Jiang, Jingbo Unknown Date
No description available.
3

Sliding Mode Control Design for Mismatched Uncertain Switched Systems

Liu, Hong-Yi 15 February 2012 (has links)
Based on the Lyapunov stability theorem, a sliding mode control design methodology is proposed in this thesis for a class of perturbed switched systems. The control of the systems is rest restricted to switching between two different constant values. New sliding mode reaching conditions are proposed for the controllers so that the controlled systems can enter the sliding mode in finite time. Once the switched control system is in the sliding mode, the stability of the system is guaranteed by choosing a suitable sliding surface. In addition, a method for alleviating the infinite switching phenomenon is also provided in this thesis. Finally, a numerical and a practical example with computer simulation results are given for demonstrating the feasibility of the proposed control scheme.
4

A design scheme of energy management, control, optimisation system for hybrid solar-wind and battery energy storages system

Sarban Singh, Ranjit Singh January 2016 (has links)
Hybrid renewable energy system was introduced to improve the individual renewable energy power system’s productivity and operation-ability. This circumstance has led towards an extensive technological study and analysis on the hybrid renewable energy system. The extensive technological study is conducted using many different approaches, but in this research the linear programming, artificial intelligence and smart grid approaches are studied. This thesis proposed a complete hardware system development, implementation and construction of real-time DC Hybrid Renewable Energy System for solar-wind-battery energy source integrated with grid network support. The proposed real-time DC HRES hardware system adopts the hybrid renewable energy system concept which is composed of solar photovoltaic, wind energy system, battery energy storage system and grid network support. The real-time DC HRES hardware system research work is divided into three stages. Stage 1 involves modelling and simulation of the proposed system using MATLAB Simulink/Stateflow software. During this stage, system’s methodological design and development is emphasised. The obtained results are considered as fundamental finding to design, develop, integrate, implement and construct the real-time DC HRES hardware system. Stage II is designing and developing the electronic circuits for the real-time DC HRES hardware system using PROTEUS software. Real time simulation is performed on the electronic circuits to study and analyse the circuit’s behaviour. This stage also involves embedded software application development for the microcontroller PIC16F877A. Thus, continuous dynamic decision-making algorithm is developed and incorporated into microcontroller PIC16F877A. Next, electronic circuits and continuous dynamic decision-making algorithm are integrated with the microcontroller PIC16F877A as a real-time DC HRES hardware system to perform real time simulation. The real-time DC HRES hardware system simulation results are studied, analysed and compared with the results obtained in Stage 1. Any indifference between the obtained results in Stage 1 and Stage 2 are analysed and necessary changes are made. Stage 3 involves integrating, implementation and construction of real-time DC HRES. The continuous dynamic decision-making algorithm is also incorporated into the real microcontroller PCI16F877A development board. Real-time DC HRES’s experimental results have successfully demonstrated the system’s ability to perform supervision, coordination, management and control of all the available energy sources with lease dependency on the grid network. The obtained results demonstrated the energy management and optimisation of the available energy sources as primary power source deliver.
5

Switching Control Strategies for the Robust Stabilization of a DC-DC Zeta Converter / DC-DCゼータコンバータのロバスト安定化のためのスイッチング制御方策

Hafez, Bin Sarkawi 24 September 2021 (has links)
京都大学 / 新制・課程博士 / 博士(情報学) / 甲第23545号 / 情博第775号 / 新制||情||132(附属図書館) / 京都大学大学院情報学研究科数理工学専攻 / (主査)教授 太田 快人, 教授 山下 信雄, 教授 大塚 敏之 / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DFAM
6

Visual homing for a car-like vehicle

Usher, Kane January 2005 (has links)
This thesis addresses the pose stabilization of a car-like vehicle using omnidirectional visual feedback. The presented method allows a vehicle to servo to a pre-learnt target pose based on feature bearing angle and range discrepancies between the vehicle's current view of the environment and that seen at the learnt location. The best example of such a task is the use of visual feedback for autonomous parallel-parking of an automobile. Much of the existing work in pose stabilization is highly theoretical in nature with few examples of implementations on 'real' vehicles, let alone vehicles representative of those found in industry. The work in this thesis develops a suitable test platform and implements vision-based pose stabilization techniques. Many of the existing techniques were found to fail due to vehicle steering and velocity loop dynamics, and more significantly, with steering input saturation. A technique which does cope with the characteristics of 'real' vehicles is to divide the task into predefined stages, essentially dividing the state space into sub-manifolds. For a car-like vehicle, the strategy used is to stabilize the vehicle to the line which has the correct orientation and contains the target location. Once on the line, the vehicle then servos to the desired pose. This strategy can accommodate velocity and steering loop dynamics, and input saturation. It can also allow the use of linear control techniques for system analysis and tuning of control gains. To perform pose stabilization, good estimates of vehicle pose are required. A simple, yet robust, method derived from the visual homing literature is to sum the range vectors to all the landmarks in the workspace and divide by the total number of landmarks--the Improved Average Landmark Vector. By subtracting the IALV at the target location from the currently calculated IALV, an estimate of vehicle pose is obtained. In this work, views of the world are provided by an omnidirectional camera, while a magnetic compass provides a reference direction. The landmarks used are red road cones which are segmented from the omnidirectional colour images using a pre-learnt, two-dimensional lookup table of their colour profile. Range to each landmark is estimated using a model of the optics of the system, based on a flat-Earth assumption. A linked-list based method is used to filter the landmarks over time. Complementary filtering techniques, which combine the vision data with vehicle odometry, are used to improve the quality of the measurements.
7

Commande et stabilité des systèmes commutés : Application Fluid Power

Ameur, Omar 12 November 2015 (has links)
Ces travaux portent sur la commande et l’analyse de la stabilité d’un système électropneumatique constitué d’un axe linéaire commandé par deux servodistributeurs régulant le débit massique entrant dans chaque chambre de l’actionneur. La problématique générale est motivée par l’apparition d’un phénomène de redécollage sur ce système électropneumatique difficilement pris en compte par les études actuelles en automatique. Ce problème, rencontré depuis de nombreuses années, concerne toutes les commandes linéaires et non linéaires mono et multidimensionnelles étudiées au laboratoire. Il se traduit par des mouvements saccadés du vérin au voisinage de l’équilibre. Ce phénomène est dû à la présence de frottements secs et aux dynamiques des pressions dans les chambres pneumatiques de l’actionneur, qui continuent à évoluer (intégrer le débit massique entrant délivré par les servodistributeurs), même après l’équilibre mécanique. La première partie de ce mémoire propose une commande non linéaire commutée afin d’éviter le phénomène de redécollage de l’actionneur électropneumatique notamment vis-à-vis des variations de frottements secs qui peuvent à tout moment causer ce phénomène. Cette technique est finalement mise en œuvre et son efficacité est constatée. La plus grande partie de ce mémoire traite l’analyse de l’actionneur électropneumatique avec sa loi de commande commutée. La présence de frottements secs et l’application d’une loi de commande commutée nous a amené à concilier une démarche d’analyse de stabilité, en considérant une classe de systèmes commutés appelée systèmes affines par morceaux. La principale difficulté de cette démarche réside dans l’obtention de fonctions de Lyapunov adéquates, qui se transforme en un problème d’optimisation sous contraintes LMI (Linear Matrix Inequality) en utilisant la S-procédure. Afin d’analyser la stabilité d’un système PWA (PieceWise Affine), la première démarche proposée permet le calcul d’une fonction de Lyapunov quadratique par morceaux sous la forme d’un problème d’optimisation sous contraintes LMI, en imposant des conditions suffisantes de stabilité. Ces dernières permettent, contrairement aux méthodes classiques, d’assurer la convergence de trajectoires d’état non pas vers un point d’équilibre, mais vers un ensemble des points d’équilibre d’un système PWA. L’approche proposée permet aussi l’étude de la robustesse vis-à-vis des variations paramétriques dans le système. Nous proposons aussi une deuxième approche pour la construction d’un type de fonctions de Lyapunov dites polynomiales par morceaux, via l’utilisation des "sum of square" et de la "power transformation", afin d’analyser la stabilité d’un ensemble de points d’équilibre d’un système PWA, en présence de phénomènes de glissement et de variations paramétriques. Cette approche propose des conditions suffisantes moins conservatives que celles imposées par les fonctions de Lyapunov quadratique par morceaux. En effet, sur des exemples de systèmes PWA présentant de dynamiques discontinues sur les frontières entre les cellules, pouvant générer à tout moment des phénomènes de glissement, ces dernières s’avèrent inefficaces et ne permettent pas d’assurer la stabilité des systèmes PWA en présence de ces phénomènes. Par conséquent, les résultats sur la fonction de Lyapunov quadratique par morceaux sont étendus pour pouvoir calculer des fonctions de Lyapunov polynomiales par morceaux d’ordre supérieur, en résolvant un problème d’optimisation sous contraintes LMI. Ces dernières permettent de garantir des conditions plus générales et moins conservatives par rapport à celles développées dans la littérature. Ces deux approches ont été appliquées afin d’analyser la stabilité de l’ensemble des points d’équilibre du système électropneumatique, en considérant à la fois un modèle de frottements sous la forme d’une saturation et un autre sous la forme d’un relais présentant une dynamique discontinue. [...] / This work focuses on the control and stability analysis of an electro-pneumatic system, i.e. a linear pneumatic cylinder controlled by two servo valves regulating the mass flow entering each chamber of the actuator. The general problem is motivated by the appearance of stick-slip on the electro-pneumatic system, hardly taken into account by the current studies in automatic control. This problem, encountered throughout the years, concerns all mono- and multidimensional linear and non-linear controls systems studied at the laboratory. In pneumatic cylinders, the phenomenon consists in a displacement of the rod a while after it has come to a rest ; this is due to the fact that the force acting on the rod initially becomes smaller that the threshold which is necessary for a motion, and then this threshold is overcome later on. In this case, stick-slip is caused by the presence of dry friction and by the pressure dynamics in the chambers, which continue to evolve (integrating the net incoming mass flow from the servovalves) even after the rod has stopped. The first part of this thesis proposes a nonlinear switching control law in order to avoid stick-slip on pneumatic cylinder, taking into account with the variations of dry friction that may occur at any time causing this phenomenon. This technique is implemented and its effectiveness is recognized. The greatest part of this thesis deals with the stability analysis of the pneumatic cylinder with its switched control law. The presence of dry friction and the application of a switched control law requires an appropriate method for approaching the stability analysis ; this method is based on considering the closed-loop system as belonging to a class of switched systems called piecewise affine systems (PWA). The main difficulty in this approach lies in obtaining adequate Lyapunov functions for proving stability, which turns into an optimization problem under LMI constraints (Linear Matrix Inequality) using the S-procedure. In order to analyze the stability of a PWA system, a first method is proposed allowing the computation of a piecewise quadratic Lyapunov function through an optimization problem under LMI constraints. The methods takes into account, in contrast to conventional methods, that the states might converge not to a single point but to a set of equilibrium points. The proposed approach allows also the study of robustness with respect to parametric variations in the system. A second method is also proposed for the construction of a type of Lyapunov functions called piecewise polynomial, using the “sum of squares” and “power transformation” techniques. This approach proposes less conservative sufficient conditions than those imposed by the piecewise quadratic Lyapunov functions, yielding a more succesfull stability test when for PWA systems featuring sliding modes and parametric variations. In fact, on PWA systems with discontinuous dynamics (which can generate sliding phenomena), piecewise quadratic Lyapunov functions might prove ineffective to prove the stability. Therefore, the results on piecewise quadratic Lyapunov functions are extended in order to compute piecewise polynomial Lyapunov functions of higher order, by solving an optimization problem under LMI constraints. These functions are more general and allow less conservative conditions compared to those formerly developed in the literature. Both of these methods have been applied to the stability analysis of the set of equilibrium points of the pneumatic cylinder, considering first a friction model in saturation form and then a model in relay form with a discontinuous dynamics. The application of the methods is successful, i.e. the robust stability is proven under dry friction threshold variations, with possibility of sliding modes.
8

Flexibility in MLVR-VSC back-to-back link

Tan, Jiak-San January 2006 (has links)
This thesis describes the flexible voltage control of a multi-level-voltage-reinjection voltage source converter. The main purposes are to achieve reactive power generation flexibility when applied for HVdc transmission systems, reduce dynamic voltage balancing for direct series connected switches and an improvement of high power converter efficiency and reliability. Waveform shapes and the impact on ac harmonics caused by the modulation process are studied in detail. A configuration is proposed embracing concepts of multi level, soft-switching and harmonic cancellation. For the configuration, the firing sequence, waveform analysis, steady-state and dynamic performances and close-loop control strategies are presented. In order not to severely compromise the original advantages of the converter, the modulated waveforms are proposed based on the restrictions imposed mathematically by the harmonic cancellation concept and practically by the synthesis circuit complexity and high switching losses. The harmonic impact on the ac power system prompted by the modulation process is studied from idealistic and practical aspects. The circuit topology being proposed in this thesis is developed from a 12-pulse bridge and a converter used classically for inverting power from separated dc sources. Switching functions are deduced and current paths through the converter are analysed. Safe and steady-state operating regions of the converter are studied in phasor diagrams to facilitate the design of simple controllers for active power transfer and reactive power generations. An investigation into the application of this topology to the back-to-back VSC HVdc interconnection is preformed via EMTDC simulations.
9

Robust H∞ switched static output feedback control design for linear switched systems subject to actuator saturation /

Carniato, Leonardo Ataide January 2019 (has links)
Orientador: Marcelo Carvalho Minhoto Teixeira / Resumo: Este trabalho dedica-se ao estudo do problema de controle robusto envolvendo custo H∞ para sistemas lineares chaveados no tempo contínuo, sujeitos à saturação no atuador e com incertezas politópicas, considerando leis de chaveamento e controladores chaveados dependentes da saída da planta. Os métodos propostos oferecem novas condições baseadas em Desigualdades Matriciais Lineares (LMIs - do inglês, Linear Matrix Inequalities) para o projeto de controladores chaveados utilizando funções de Lyapunov dependentes de parâmetros. O método é baseado em um resultado recentemente introduzido na literatura para o projeto de controle H∞ de saída o qual evita igualdades matriciais lineares (LMEs - do inglês, Linear Matrix Equalities) e a necessidade de impor restrições nas matrizes de saída do sistema, isto é, as matrizes de saída do sistema podem ser de posto linha incompleto. Com o objetivo de estender estes resultados, a restrição de saturação no atuador é estudada. Análises teóricas e resultados de simulações mostram que os novos procedimentos são menos conservativos quando comparados a métodos publicados recentemente na literatura. No método proposto, as condições são uma classe particular de desigualdades matriciais bilineares (BMIs - do inglês, Bilinear Matrix Inequalities), as quais contêm alguns termos bilineares devido à multiplicação de matrizes por escalares. Estes termos estão relacionados à combinação convexa das matrizes de chaveamento bem como a outros parâmetros escalare... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: This thesis is devoted to the study of the robust H∞ control problem of continuous-time switched linear systems subject to actuator saturation with polytopic uncertainties, considering an output-dependent switching law and a switched static output feedback controller. The proposed method offers new sufficient conditions based on linear matrix inequalities (LMIs) for designing the switched controllers using parameter-dependent Lyapunov functions. The method is based on a static output feedback H∞ control design recently presented in the literature that avoids linear matrices equalities (LMEs) and the need to impose any constraints on output system matrices, that is, the output matrices of the system are allowed to be of non-full row rank. In order to extend those results, the actuator saturation constraint is also studied. Theoretical analyses and simulation results show that these new procedures are less conservative than recent methods available in the literature. The conditions of the proposed methods are a particular class of Bilinear Matrix Inequalities (BMIs), which contain some bilinear terms as the product of a matrix and a scalar, related to a suitable convex combination and scalars parameters to provide extra free dimensions in the solution space. The hybrid algorithm Differential Evolution-Linear Matrix Inequality (DE-LMI), is proposed for obtaining feasible solutions of this particular NP-hard problem. Examples show that the proposed methodologies reduce the design ... (Complete abstract click electronic access below) / Doutor
10

Experimental Studies on Acoustic Noise Emitted by Induction Motor Drives Operated with Different Pulse-Width Modulation Schemes

Binoj Kumar, A C January 2015 (has links) (PDF)
Voltage source inverter (VSI) fed induction motors are increasingly used in industrial and transportation applications as variable speed drives. However, VSIs generate non-sinusoidal voltages and hence result in harmonic distortion in motor current, motor heating, torque pulsations and increased acoustic noise. Most of these undesirable effects can be reduced by increasing the switching frequency of the inverter. This is not necessarily true for acoustic noise. Acoustic noise does not decrease monotonically with increase in switching frequency since the noise emitted depends on the proximity of harmonic frequencies to the motor resonant frequencies. Also there are practical limitations on the inverter switching frequency on account of device rating and losses. The switching frequency of many inverters often falls in the range 2 kHz - 6 kHz where the human ear is highly sensitive. Hence, the acoustic noise emission from the motor drive is of utmost important. Further, the acoustic noise emitted by the motor drive is known to depend on the waveform quality of the voltage applied. Hence, the acoustic performance varies with the pulse width modulation (PWM) technique used to modulate the inverter, even at the same modulation index. Therefore a comprehensive study on the acoustic noise aspects of induction motor drive is required. The acoustic noise study of the motor drive poses multifaceted challenges. A simple motor model is sufficient for calculation of total harmonic distortion (THD). A more detailed model is required for torque pulsation studies. But the motor acoustic noise is affected by many other factors such as stator winding distribution, space harmonics, geometry of stator and rotor slots, motor irregularities, structural issues controlling the resonant frequency and environmental factors. Hence an accurate model for acoustic noise would have to be very detailed and would span different domains such as electromagnetic fields, structural engineering, vibration and acoustics. Motor designers employ such detailed models along with details of the materials used and geometry to predict the acoustic noise that would be emitted by a motor and also to design a low-noise motor. However such detailed motor model for acoustic noise purposes and the necessary material and constructional details of the motor are usually not available to the user. Also, certain factors influencing the acoustic noise change due to wear and tear during the operational life of the motor. Hence this thesis takes up an experimental approach to study the acoustic noise performance of an inverter-fed induction motor at any stage of its operating life. A 10 kVA insulated gate bipolar transistor (IGBT) based inverter is built to feed the induction motor; a 6 kW and 2.3 kW induction motors are used as experimental motors. A low-cost acoustic noise measurement system is also developed as per relevant standards for measurement and spectral analysis of the acoustic noise emitted. For each PWM scheme, the current and acoustic noise measurements are carried out extensively at different carrier frequencies over a range of fundamental frequencies. The main cause of acoustic noise of electromagnetic origin is the stator core vibration, which is caused by the interaction of air-gap fluxes produced by fundamental current and harmonic currents. In this thesis, an experimental procedure is suggested for the acoustic noise characterization of an induction motor inclusive of determination of resonant frequencies. Further, based on current and acoustic noise measurements, a vibration model is proposed for the stator structure. This model is used to predict the acoustic noise pertaining to time harmonic currents with reasonable accuracy. Literature on motor acoustic noise mainly focuses on sinusoidal PWM (SPWM), conventional space vector PWM (CSVPWM) and random PWM (RPWM). In this thesis, acoustic noise pertaining to two bus-clamping PWM (BCPWM) schemes and an advanced bus-clamping PWM (ABCPWM) scheme is investigated. BCPWM schemes are mainly used to reduce the switching loss of the inverter by clamping any of the three phases to DC rail for 120◦ duration of the fundamental cycle. Experimental results show that these BCPWM schemes reduce the amplitude of the tonal component of noise at the carrier frequency, compared to CSVPWM. Experimental results with ABCPWM show that the overall acoustic noise produced by the motor drive is reduced at low and medium speeds if the switching frequency is above 3 kHz. Certain spread in the frequency spectrum of noise is also seen with both BCPWM and ABCPWM. To spread the acoustic noise spectrum further, many variable-frequency PWM schemes have been suggested by researchers. But these schemes, by and large, increase the current total harmonic distortion (THD) compared to CSVPWM. Thus, a novel variable-frequency PWM (VFPWM) method is proposed, which offers reduced current THD in addition to uniformly spread noise spectrum. Experimental results also show spread in the acoustic noise spectrum and reduction in the dominant noise components with the proposed VFPWM. Also, the current THD is reduced at high speeds of the motor drive with the proposed method.

Page generated in 0.4738 seconds