• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 6
  • 6
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Sliding Correlator Channel Sounder for Ultra-Wideband Measurements

Pirkl, Ryan Jesse 29 June 2007 (has links)
This body of work forms a detailed and comprehensive guide for those interested in performing broadband wireless channel measurements. Discussion addresses the theoretical and practical aspects of designing and implementing a sliding correlator channel sounder, as well as how such a system may be used to measure and model the ultra-wideband wireless channel. The specific contributions of this work are as follows: Developed a systematic methodology for designing optimal sliding correlator-based channel sounders. Constructed a UWB channel sounder based upon a 17-bit LFSR that attained 1.66 ns of temporal resolution and 34 dB of dynamic range. Performed an exemplary measurement campaign of the UWB channel from which UWB angular spreads and RMS delay spreads are reported. The design procedure developed in Chapter 3 will allow researchers to build optimal channel sounders for investigating next-generation wireless channels. Chapter 4 s discussion addresses the real-world challenges of constructing a high performance sliding correlator channel sounder. Finally, the measurement campaign discussed in Chapter 5 outlines a procedure for investigating the spatio-temporal characteristics of the wireless channel and provides some of the first examples of UWB angular spread measurements.
2

Behavioral VHDL Implementation of Coherent Digital GPS Signal Receiver

Daita, Viswanath 01 November 2004 (has links)
Global Positioning System is a technology which is gaining acceptance. Originally developed for military purposes, it is being used in civilian applications such as navigation, emergency services, etc. A system-on-chip application merges different functions and applications on a single substrate. This project models a GPS receiver for a system on chip application. The GPS receiver, developed as a core, is intended to be a part of a navigation tour guide being developed. The scope of this work is the GPS C/A code on the L1 carrier. The digital signal processing back-end in a GPS receiver is modelled in this work. VHDL modeling of various communiation sub-blocks, detection and demodulation schemes is done. A coherent demodulation of the GPS signals is implemented. GPS receiver calculates the position based on the data collected from four satellites. Given four satellites, acquisition of the data from the signals is performed and data demodulated from the same. Synthetic data is generated for validation purposes. Code acuqisition and tracking of the GPS C/A signal is implemented. Cadence NC-Launch VHDL simulator is used to validated the behavioral VHDL model.
3

The Impact of Signal Bandwidth on Indoor Wireless Systems in Dense Multipath Environments

Hibbard, Daniel James 01 June 2004 (has links)
Recently there has been a significant amount of interest in the area of wideband and ultra-wideband (UWB) signaling for use in indoor wireless systems. This interest is in part motivated by the notion that the use of large bandwidth signals makes systems less sensitive to the degrading effects of multipath propagation. By reducing the sensitivity to multipath, more robust and higher capacity systems can be realized. However, as signal bandwidth is increased, the complexity of a Rake receiver (or other receiver structure) required to capture the available power also increases. In addition, accurate channel estimation is required to realize this performance, which becomes increasingly difficult as energy is dispersed among more multipath components. In this thesis we quantify the channel response for six signal bandwidths ranging from continuous wave (CW) to 1 GHz transmission bandwidths. We present large scale and small scale fading statistics for both LOS and NLOS indoor channels based on an indoor measurement campaign conducted in Durham Hall at Virginia Tech. Using newly developed antenna positioning equipment we also quantify the spatial correlation of these signals. It is shown that the incremental performance gains due to reduced fading of large bandwidths level off as signals approach UWB bandwidths. Furthermore, we analyze the performance of Rake receivers for the different signal bandwidths and compare their performance for binary phase modulation (BPSK). It is shown that the receiver structure and performance is critical in realizing the reduced fading benefit of large signal bandwidths. We show practical channel estimation degrades performance more for larger bandwidths. We also demonstrate for a fixed finger Rake receiver there is an optimal signal bandwidth beyond which increased signal bandwidth produces degrading results. / Master of Science
4

Wideband Propagation Measurement Results, Simulation Models, and Processing Techniques for a Sliding Correlator Measurement System

Newhall, William George 12 December 1997 (has links)
Radio wave propagation measurements provide a way to accurately and reliably characterize environments to assist in the development and optimization of wireless communication systems. As digital radio systems occupy wider bandwidths and use multipath signal combining to enhance quality of service, knowledge of time dispersion and the multipath structure of radio channels become increasingly important. The wideband measurement system presented herein provides a practical means to precisely measure the delays and strengths of individual multipath components which arrive at a radio receiver. Presented in this Thesis are fundamental theory, practical implementation, and simulation models for a sliding correlator measurement system. The sliding correlator technique is explained in detail and large-scale measurement survey is presented. Techniques for statistically quantifying the characteristics of propagation using the sliding correlator measurements are presented and compared. The development of simulations of the sliding correlator system is described, and simulation results are used to test conventional and newly developed post-processing algorithms. This Thesis presents a practical view of the sliding correlator measurement system, but its foundations are rooted in the theoretical results which are explained and derived herein. Propagation researchers and students in the wireless communication field may find this work and the cited references useful for continued study of wideband propagation measurements or for application of the sliding correlator system as a wideband measurement solution. / Master of Science
5

Measured and Modeled Time and Angle Dispersion Characteristics of the 1.8 GHz Peer-to-Peer Radio Channel

Patwari, Neal 08 May 1999 (has links)
In an extensive outdoor propagation study, low antenna heights of 1.7 m are used at both the transmitter and the receiver to measure over 3500 wideband power-delay profiles (PDPs) of the channel for a peer-to-peer communications system. Rural and urban areas are studied in 22 different transmitter-receiver links. The results are used to characterize the narrowband path loss, mean delay, root-mean-square (RMS) delay spread, and timing jitter of the peer-to-peer wideband channel. Small-scale fading characteristics are measured in detail by measuring and analyzing 160 PDPs within each local area. This thesis shows the measurement setup for the calculation of fading rate variance and angular spread and reports the first known attempt to calculate angular spread from track power measurements. New analysis presented in this thesis shows the effect of measurement error in the calculation of angular spread. The expected characteristics of angular spread are derived using two different angle-of-arrival (AOA) models from the literature. Measurement results show initial validation of Durgin's angular spread theory. A new measurement-based algorithm for simulating wideband fading processes is developed and implemented. This simulation technique shows promise in the simulation of high-bit rate peer-to-peer radio communication systems. / Master of Science
6

Odhad parametrů přenosového kanálu pro systémy CDMA / Channel estimation in CDMA systems

Kadlec, Petr January 2009 (has links)
The subject of this work deals with the problem of channel estimation for CDMA systems. This method of multiple access when individual users share the same full bandwidth simultaneously and are differentiated with any of pseudorandom sequences, is now the most perspective method. That is proved by its wide implementation in mobile networks of the third generation and higher systems. This work describes basic theory principles of spread spectrum, above all DS-CDMA (Direct Sequence-CDMA) and furthermore some phenomena of radio wireless channel that affect changes in transmitted signal in its way from transmitter to receiver. Terms of fading, multipath propagation, loss, refraction, scattering of the wave and Rice and Rayleigh probability density functions are mentioned. The third chapter deals with yet known and used capabilities of channel estimation. Differences, advantages and disadvantages of so-called blind estimation or training-based estimation are discussed. Two algorithms: LS method and sliding correlator are analyzed in more detail. There is also description of their simulations in Matlab and some results of these simulations are discussed. The last chapter deals with comparison of main characteristics and achievable accuracy of wireless channel impulse response estimation by both methods, and their possible utilization in real live.

Page generated in 0.2047 seconds