• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 79
  • 67
  • 13
  • 9
  • 5
  • 4
  • 3
  • 2
  • 1
  • Tagged with
  • 221
  • 221
  • 73
  • 62
  • 54
  • 48
  • 46
  • 42
  • 33
  • 29
  • 29
  • 27
  • 25
  • 25
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Stabilization of Natural Clay Riverbanks with Rockfill Columns: A Full-Scale Field Test and Numerical Verification

Thiessen, Kendall 19 January 2011 (has links)
Rockfill columns have been used to stabilize the clay riverbanks in the Winnipeg area for over two decades. The construction methods used in Manitoba are uniquely adapted to the local soil conditions. The performance of rockfill columns in Manitoba has generally been satisfactory, except that in some cases significant deformations have occurred during and after construction (Yarechewski and Tallin 2003). This thesis will discuss the full-scale test loading of a riverbank that was stabilized with rockfill columns. The purpose of the test was to measure the load-deformation characteristics of a reinforced slope in order to further the understanding of rockfill column behaviour. Rockfill column technology has evolved from granular shear key methods for stabilizing slopes. The relatively weak and soft lacustrine clay is reinforced with compacted columns of stronger and stiffer limestone rockfill. The research test site is located along the natural banks of the Red River in The City of Winnipeg. The project involved an extensive site investigation, and soils characterization program in preparation for the field test. Eleven columns, 2.1 m in diameter were tested by surcharging the slope with 1920 tonnes of fill. The deformations were measured with standard and in-place inclinometers while the porewater pressure response of the in-situ soils was continuously monitored with vibrating wire piezometers. The research further investigated the mobilization of resistance along the length of the rockfill columns with finite element models. The analysis of the model results illustrated the mobilization of shear resistance within the rockfill and the development of stresses across the column cross section. The important engineering characteristics of rockfill are discussed in the context of rockfill column design and the importance of effective compaction is highlighted. The results of this research are used to develop recommendations for rockfill column design, analysis and construction.
32

Groundwater, Pore Pressure and Wall Slope Stability – a model for quantifying pore pressures in current and future mines.

Brehaut, Richard Jeremy January 2009 (has links)
The Hamersley Province, located approximately 1200 km north of Perth, Western Australia forms part of the southern Pilbara craton, an extensive area of Band Iron Formations (BIF). The area has a high economic significance due to several enrichment stages of the country rock (BIF) resulting in several large high-grade iron ore deposits. Mount Whaleback near Newman and Mount Tom Price are the largest deposits, where reserves have been estimated at 1400 Mt and 900 Mt respectively. These ore bodies have been quantified as being high grade resources at approximately 64 % iron, with a high lump to fines ratio, and low impurities. The Mount Tom Price ore body is a hematite-rich ore, associated with a variety of shale and some dolomitic units (MacLeod et al., 1963, MacLeod, 1966, Taylor et al., 2001, Morris, 1980). The local hydrogeology of the Mount Tom Price area involves two main aquifer systems. The Dales Gorge member of the Brockman Iron Formation with contributions from the upper mineralised section of Footwall zone make up the main semi confined aquifer within the area. The underlying low permeability Mount McRae Shale and Mount Sylvia Shale lithologies separate a secondary aquifer which is located within the Wittenoom Formation. A dewatering program within Mount Tom Price has been ongoing since installation in 1994. Within the open pit mining industry, pits depths are increasingly being deepened as the easily accessible surface ore has been removed. This involves excavating pit walls below the existing groundwater table, which can lead to instabilities within pit walls. Added to this is the timing and economic considerations which need to be accounted for in a working mine. As dewatering and depressurisation are pivotal to the extraction of ore resources below the groundwater table, there can often be considerable time pressures to maintain planned mine developments (Hall, 2003). The South East Prongs pit, located within the Mount Tom Price mine, holds some of the most valued low impurity, high grade hematite ore. Structurally the South East Prongs is unique as the deposit lies in the base of a steeply dipping double plunging syncline, intersected by the Southern Batter Fault which runs parallel in strike to the Turner Syncline. The current pit floor of South East Prongs is located at 600 mRL. The long term development plan for the western end of this pit includes a further 30 m of excavation to a final depth of 570 mRL. This currently poses a number of stability issues that require resolution before any development can be undertaken. A conceptual understanding of flow dynamics within structurally complex wall rock environment has been generated through the utilisation of finite element numerical modelling. The complex structural setting within the northern wall of the South East Prongs has shown to interact with high conductivity lithologies to promote preferential flow of groundwater from the underling Wittenoom Formation aquifer. Recharge to the semi confined DG aquifer occurs as groundwater travels up shear zones within the South East Prongs Fault Zone before migrating along Brunos Band. An investigation into alternative methods of depressurisation has been recommended to ensure the ongoing management of pore water pressures within the northern pit wall during planned pit cut backs. Limiting recharge from the WF to the pit through stated preferential flow paths has been identified as a potential issue when the remaining DG aquifer is removed. Maintaining the proposed dewatering buffer will be difficult to achieve using the current system. The ability to design optimal pit shells for access and ore recovery as well as an effective dewatering and depressurisation system relies heavily on the a sound geological model. Further to this, time allocations to ensure forward planning deadlines are met can be significantly interrupted if adjustments to initial plans are required.
33

An Engineering Geological Investigation of Footwall Toe-Buckle Instability at the Malvern Hills Opencast Coal Mine, Inland Canterbury

Seale, Joyce Ann Forsyth January 2007 (has links)
Abstract A small opencast coal mine has been developed over previous underground workings in the Malvern Hills, inland Canterbury, New Zealand. The coal measure strata dip at ~45° to the southeast, and consist of finely laminated mudrocks with multiple coal seams of varying thickness. Production is in the range 10,000 to 15,000 tonnes per annum from two principal seams with an aggregate thickness of ~4.5m. The open pit has been designed with footwall batters parallel to bedding, vertical bench separation of 15m, and the highwall formed to a nominal 4V:1H. Preliminary examination of the open pit mine site in 2003 indicated that footwall failures involved de-lamination due to drying out on exposure, and buckling and/or shearing along bedding surfaces. During mine development it became apparent that the batters formed easily where thin (less than 0.3m thick) coal seams were present in the sequence. In the 2004 campaign the pit floor was lowered, with a new batter and bench formed to expose the 3m thick Main Seam coal. The day after completion of this batter, a large buckle failure occurred involving the entire length of the pit (85m along strike), and a 2m thick intact slab with a total volume of ~3700m³ translated down dip 6.2m on the base of a thin coal seam to form a pronounced buckle at the toe. Even though footwall batters are cut to the angle of dip, which is entirely realistic geotechnically, the de-coupling and buckling that occurred compromised the safety and economics of the whole operation. Buckling failure in moderately dipping soft rock sequences has been identified in footwall slopes of coal mining operations. Models used in the literature to simulate similar footwall failures include: the Euler solution using column and beam buckling theory to calculate the kinematic feasibility of a slab-buckle, conceptual modelling using a base friction table, and numerical modelling using distinct element analysis. Back analysis of the Malvern Hills failure was necessary to investigate the controls on the footwall stability, and for future mine design. Engineering geological description of the pit and slab materials was done, and an engineering geological model created. Samples of the slab material and failure surface were collected by coring and trenching, with testing of these materials to establish the required parameters for use in the Euler solution. Back analysis using three different forms of the Euler solution provided unrealistic results that overestimated the overall length of a stable slope by more than 10 times. An engineering geology reassessment was undertaken, and a number of inadequacies in the Euler solution methodology were identified particularly in relation to pore pressure and elasticity considerations. Given that the Malvern Hills toe-buckle slab failure displays both elastic and plastic deformation components in the soft mudrocks, and the slab itself cannot be considered as homogenous, reservations must exist about conventional predictive analytical techniques for pit slope failures of this type. No further large scale slab-buckle failures have developed at the mine site, in part because of the slow rate of coal extraction, but precautionary drainage of the footwall slopes has been undertaken to improve overall batter stability. The location of the slab-buckle failure on a critically positioned pre-sheared thin coal seam with full hydrostatic head is considered the most probable cause, rather than inherent instability of the generic bench and batter arrangement adopted. The adoption of a precedent based engineering geology approach to future mine design is considered the most appropriate solution in the circumstances.
34

Stabilization of Natural Clay Riverbanks with Rockfill Columns: A Full-Scale Field Test and Numerical Verification

Thiessen, Kendall 19 January 2011 (has links)
Rockfill columns have been used to stabilize the clay riverbanks in the Winnipeg area for over two decades. The construction methods used in Manitoba are uniquely adapted to the local soil conditions. The performance of rockfill columns in Manitoba has generally been satisfactory, except that in some cases significant deformations have occurred during and after construction (Yarechewski and Tallin 2003). This thesis will discuss the full-scale test loading of a riverbank that was stabilized with rockfill columns. The purpose of the test was to measure the load-deformation characteristics of a reinforced slope in order to further the understanding of rockfill column behaviour. Rockfill column technology has evolved from granular shear key methods for stabilizing slopes. The relatively weak and soft lacustrine clay is reinforced with compacted columns of stronger and stiffer limestone rockfill. The research test site is located along the natural banks of the Red River in The City of Winnipeg. The project involved an extensive site investigation, and soils characterization program in preparation for the field test. Eleven columns, 2.1 m in diameter were tested by surcharging the slope with 1920 tonnes of fill. The deformations were measured with standard and in-place inclinometers while the porewater pressure response of the in-situ soils was continuously monitored with vibrating wire piezometers. The research further investigated the mobilization of resistance along the length of the rockfill columns with finite element models. The analysis of the model results illustrated the mobilization of shear resistance within the rockfill and the development of stresses across the column cross section. The important engineering characteristics of rockfill are discussed in the context of rockfill column design and the importance of effective compaction is highlighted. The results of this research are used to develop recommendations for rockfill column design, analysis and construction.
35

Coupling of two natural complex systems: earthquake-triggered landslides

Ghahramani, Masoumeh January 2012 (has links)
This thesis contains two main parts. The first part presents a database compiling 137 landslide-triggering earthquakes (LTEs) worldwide, with magnitudes greater than the minimum observed threshold for causing landslides (M4.5), for the period of 1998 -2009. Our data sources include a comprehensive review of the existing literature on earthquake-triggered landslides (ETLs), and also a USGS-based earthquake catalog (PAGER-CAT) that contains information on earthquake-triggered secondary events. Only 14 earthquakes out of the 137 seismic events induced significant numbers of landslides (>250). We compared the number of ETLs with the total number of earthquakes with M ≥ 4.5 (n=68,734) during the same period of time. The results show that only 0.2 % of ETLs and only 4.5% of earthquakes of M > 6 resulted in landslide. In addition, we compiled a database of 37 large-scale landslides, involving initial failure volumes of greater than 20 Mm3 that occurred worldwide between 1900 to 2010. The database contains large-scale earthquake-triggered (n ETLs=18) and non-earthquake-triggered landslides (n NETLs=20), i.e., ca. 50% of large-scale landslides were induced by seismic activity. Surprisingly, the volume-temporal frequency curves of ETLs and NETLs show almost identical slopes and intercepts. Thus, for a given volume, the annual frequency of ETLs is almost identical to that of NETLs in the 110 year period. In contrast to previous studies, this thesis found that the volume of the largest landslide triggered by a given landslide-triggering earthquake is not a function of earthquake magnitude. Peak ground motions (PGA, PGV, and PSA) were calculated for the 18 large-scale ETLs at the site of each occurrence and the resulting values show a correlation with the volume of landslides below the threshold of ca. 80 Mm3. Above this threshold, the relationship between peak ground motions and ETL volume shows complex and nonlinear behavior. The results suggest that 1) other special conditions are required for significant earthquake-triggered landslides to occur, and 2) that very large earthquake-triggered landslides (volume greater than 80 Mm3) result from complex progressive failure mechanisms initiated by seismic shaking (i.e., above this threshold volume, landslide volume is independent of PGA, PGV, and PSA). A detailed analysis of the two 1985 Nahanni earthquakes and the North Nahanni rockslide triggered by the first main shock is carried out in the second part of the study. The North Nahanni rockslide, Northwest Territories, Canada was triggered by the earthquake of M=6.6 on October 5th, 1985. The slide occurred in a Palaeozoic carbonate sequence along a thrust fault, which partly follows bedding and partly cuts across bedding. The sliding surface within the limestone consisted of two planes; the lower plane dipped at 20° while the upper plane dipped at 35°. Slope stability analysis is performed using discontinuum numerical modeling. Static slope stability analyses indicate that the sliding rock was marginally safe for the sliding surface friction angles of 24o or higher. Dynamic analyses of the co-seismic movements are conducted by applying a series of sinusoidal waves to the base of the model. The amplitudes of the October earthquake's seismic waves are estimated using strong motion data available from the second main shock. The results, from the dynamic analysis indicate that the slope becomes unstable for given seismic inputs at a specific range of friction angles (24o to 30o) for the sliding surface and the deformation behavior of the North Nahanni rock masses is dependent on the frequency of the seismic signals. Because the static slope stability analysis showed that the slope was close to instability prior to the seismic shaking, we suggest that the 1985 Nahanni earthquake operated as a trigger event that accelerated the occurrence of the slide. This finding supports our earlier results of the global scale study, which showed that the triggering event does not change the general trend of the frequency-volume distribution of landslides; however, it can accelerate the occurrence of slope failure.
36

Assessment Of Degradation Mechanism And Stability Of A Cut Slope In Jointed And Sheared Limestone Along Ankara-eskisehir E90 Highway

Oztekin, Burak 01 December 2004 (has links) (PDF)
Due to rapidly growing population of Ankara city (Turkey) and traffic load, it is required to widen some of the existing highways. One of them is Ankara-EskiSehir (E-90) highway that connects highly populated areas to the city center. During widening, several cut slopes were formed along the highway route. However, some instability problems such as small-sized rock falls and rock detachments have occurred along a cut slope in highly jointed, folded and sheared limestone. They caused local degradation of the cut slope. The cut slope has a slope angle varying from 71&deg / to 84&deg / and contains several shear zones. In this study, the relationships between the existing detachment zones and various parameters (e.g. block size, point load strength index, weathering, shear zone, daylight zone) considered to be important for slope instability were investigated using GIS-based statistical landslide susceptibility analyses in order to predict the further aerial extension of the detachment zones with time. During the overlay analyses, statistical index and weighting factor methods were used by means of TNT-MIPS software. The outcomes of the analyses using both methods are compared and evaluated together with the field observations to check the reliability of the methods and to assess the detachment zones that may develop in the future. Additionally, limit equilibrium analyses were also carried out for the determination of the possible large scale mass failures. The overlay analyses indicate some risky zones where detachments are likely to occur in the future. On the other hand, the limit equilibrium analysis of the rock mass using Bishop simplified method shows that except one section no mass failure is expected in the cut slope. Suitable remediation measures which include the use of wire mesh, shotcrete, toe support, and concrete barrier blocks or catch/barrier fences are recommended for these zones.
37

Investigations into the Shear Strength Reduction method using distinct element models

Fournier, Mathew 11 1900 (has links)
This thesis reports a detailed investigation into the use of the Shear Strength Reduction (SSR) method to determine factor of safety values in discontinuum models using the Universal Distinct Element Code. The SSR method depends on the definition of failure within the model and two different criteria were compared: the numerical unbalanced force definition and a more qualitative displacement-monitoring based method. A parametric study was first undertaken, using a simple homogeneous rock slope, with three different joint networks representing common kinematic states. Lessons learned from this study were then applied to a more complex case history used for validation of the SSR method. The discontinuum models allow for the failure surface to propagate based on constitutive models that better idealize the rockmass than simpler methods such as limit equilibrium (e.g. either method of slices or wedge solutions) and even numerical continuum models (e.g. finite difference, finite element). Joints are explicitly modelled and can exert a range of influences on the SSR result. Simple elasto-plastic models are used for both the intact rock and joint properties. Strain-softening models are also discussed with respect to the SSR method. The results presented highlight several important relationships to consider related to both numerical procedures and numerical input parameters. The case history was modelled similar to how a typical forward analysis would be undertaken: i.e. simple models with complexities added incrementally. The results for this case generally depict a rotational failure mode with a reduced factor of safety due to the presence of joints within the rockmass when compared to a traditional limit equilibrium analysis. Some models with large persistence of steeply dipping joints were able to capture the actual failure surface. Softening models were employed in order to mimic the generation and propagation of joints through the rockmass in a continuum; however, only discontinuum models using explicitly defined joints in the model were able to capture the correct failure surface.
38

Modelling the effects of soil variability and vegetation on the stability of natural slopes.

Chok, Yun Hang January 2009 (has links)
It is well recognised that the inherent soil variability and the effect of vegetation, in particular the effect of tree root reinforcement, have a significant effect on the stability of a natural slope. However, in practice, these factors are not commonly considered in routine slope stability analysis. This is due mainly to the fact that the effects of soil variability and vegetation are complex and difficult to quantify. Furthermore, the available slope stability analysis computer programs used in practice, which adopt conventional limit equilibrium methods, are unable to consider these factors. To predict the stability of a natural slope more accurately, especially the marginally stable one, the effects of soil variability and vegetation needs to be taken into account. The research presented in this thesis focuses on investigating and quantifying the effects of soil variability and vegetation on the stability of natural slopes. The random finite element method (RFEM), developed by Griffiths and Fenton (2004), is adopted to model the effect of soil variability on slope stability. The soil variability is quantified by the parameters called the coefficient of variation (COV) and scale of fluctuation (SOF), while the safety of a slope is assessed using probability of failure. In this research, extensive parametric studies are conducted, using the RFEM, to investigate the influence of COV and SOF on the probability of failure of a cohesive slope (i.e. undrained clay slope) with different geometries. Probabilistic stability charts are then developed using the results obtained from the parametric studies. These charts can be used for a preliminary assessment of the probability of failure of a spatially random cohesive slope. In addition, the effect of soil variability on c'–ϕ' slopes is also studied. The available RFEM computer program (i.e. rslope2d) is limited to analysing slopes with single-layered soil profile. Therefore, in this research, this computer program is modified to analyse slopes with two-layered soil profiles. The modified program is then used to investigate the effect of soil variability on two-layered spatially random cohesive slopes. It has been demonstrated that the spatial variability of soil variability has a significant effect on the reliability of both single and two-layered soil slopes. Artificial neural networks (ANNs), which are a powerful data-mapping tool for determining the relationship between a set of input and output variables, are used in an attempt to predict the probability of failure of a spatially random cohesive slope. The aim is to provide an alternative tool to the RFEM and the developed probabilistic stability charts because the RFEM analyses are computationally intensive and time consuming. The results obtained from the parametric studies of a spatially random cohesive slope are used as the database for the ANN model development. It has been demonstrated that the ANN models developed in this research are capable of predicting the probability of failure of a spatially random cohesive slope with high accuracy. The developed ANN models are then transformed into relatively simple formulae for direct application in practice. The effect of root reinforcement caused by vegetation is modelled as additional cohesion to the soils, known as root cohesion, cr. The areas affected by tree roots (i.e. root zone) are incorporated in the finite element slope stability model. The extent of the root zone is defined by the depth of root zone, hr. Parametric studies are conducted and the results are used to develop a set of stability charts that can be used to assess the contribution of root reinforcement on slope stability. Furthermore, ANN models and formulae are also developed based on the results obtained from the parametric studies. It has been demonstrated that the factor of safety of a slope increase linearly with the values cr and hr, and the contribution of root reinforcement to a marginally stable slope is significant. In addition, probabilistic slope stability analysis considering both the variability of the soils and root cohesion are conducted using the modified RFEM computer program. It has been demonstrated that the spatial variability of root cohesion has a significant effect on the probability of slope failure. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1349971 / Thesis (Ph.D.) - University of Adelaide, School of Civil, Environmental and Mining Engineering, 2009
39

Modelling the effects of soil variability and vegetation on the stability of natural slopes.

Chok, Yun Hang January 2009 (has links)
It is well recognised that the inherent soil variability and the effect of vegetation, in particular the effect of tree root reinforcement, have a significant effect on the stability of a natural slope. However, in practice, these factors are not commonly considered in routine slope stability analysis. This is due mainly to the fact that the effects of soil variability and vegetation are complex and difficult to quantify. Furthermore, the available slope stability analysis computer programs used in practice, which adopt conventional limit equilibrium methods, are unable to consider these factors. To predict the stability of a natural slope more accurately, especially the marginally stable one, the effects of soil variability and vegetation needs to be taken into account. The research presented in this thesis focuses on investigating and quantifying the effects of soil variability and vegetation on the stability of natural slopes. The random finite element method (RFEM), developed by Griffiths and Fenton (2004), is adopted to model the effect of soil variability on slope stability. The soil variability is quantified by the parameters called the coefficient of variation (COV) and scale of fluctuation (SOF), while the safety of a slope is assessed using probability of failure. In this research, extensive parametric studies are conducted, using the RFEM, to investigate the influence of COV and SOF on the probability of failure of a cohesive slope (i.e. undrained clay slope) with different geometries. Probabilistic stability charts are then developed using the results obtained from the parametric studies. These charts can be used for a preliminary assessment of the probability of failure of a spatially random cohesive slope. In addition, the effect of soil variability on c'–ϕ' slopes is also studied. The available RFEM computer program (i.e. rslope2d) is limited to analysing slopes with single-layered soil profile. Therefore, in this research, this computer program is modified to analyse slopes with two-layered soil profiles. The modified program is then used to investigate the effect of soil variability on two-layered spatially random cohesive slopes. It has been demonstrated that the spatial variability of soil variability has a significant effect on the reliability of both single and two-layered soil slopes. Artificial neural networks (ANNs), which are a powerful data-mapping tool for determining the relationship between a set of input and output variables, are used in an attempt to predict the probability of failure of a spatially random cohesive slope. The aim is to provide an alternative tool to the RFEM and the developed probabilistic stability charts because the RFEM analyses are computationally intensive and time consuming. The results obtained from the parametric studies of a spatially random cohesive slope are used as the database for the ANN model development. It has been demonstrated that the ANN models developed in this research are capable of predicting the probability of failure of a spatially random cohesive slope with high accuracy. The developed ANN models are then transformed into relatively simple formulae for direct application in practice. The effect of root reinforcement caused by vegetation is modelled as additional cohesion to the soils, known as root cohesion, cr. The areas affected by tree roots (i.e. root zone) are incorporated in the finite element slope stability model. The extent of the root zone is defined by the depth of root zone, hr. Parametric studies are conducted and the results are used to develop a set of stability charts that can be used to assess the contribution of root reinforcement on slope stability. Furthermore, ANN models and formulae are also developed based on the results obtained from the parametric studies. It has been demonstrated that the factor of safety of a slope increase linearly with the values cr and hr, and the contribution of root reinforcement to a marginally stable slope is significant. In addition, probabilistic slope stability analysis considering both the variability of the soils and root cohesion are conducted using the modified RFEM computer program. It has been demonstrated that the spatial variability of root cohesion has a significant effect on the probability of slope failure. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1349971 / Thesis (Ph.D.) - University of Adelaide, School of Civil, Environmental and Mining Engineering, 2009
40

Análise numérica da influência de chuvas extremas na estabilidade de taludes. / Numerical analysis of influence of extreme rainfall in slope stability.

Veroska Dueñas Zambrana 13 November 2014 (has links)
Escorregamentos de taludes no Sudeste do Brasil são causados principalmente, pelo efeito da água proveniente das chuvas. Nos últimos anos, vem se incrementando o número de desastres naturais, ao passo são registradas mudanças climáticas, que podem exercer influência na ocorrência de chuvas extremas. Muitas encostas permanecem grande parte do ano com o solo em estado não saturado, porém variações nas condições ambientais podem ocasionar mudanças bruscas da sucção, reduzindo ou até mesmo eliminando-a e gerando pressões neutras positivas. A dissertação apresenta, um estudo sobre a influência das chuvas, consideradas extremas, no processo de infiltração e de este nos eventos de escorregamentos, considerados catastróficos pela sua dimensão, e que causaram prejuízos ambientais, econômicos e sociais no Brasil. Para o estudo foram selecionados dois eventos de escorregamentos translacionais rasos relativamente típicos, considerados catastróficos, um deles aconteceu na região da Serra de Cubatão em janeiro do ano 1985, e o outro na Região Serrana do Rio de Janeiro em janeiro de 2011. Estes dois eventos apresentaram características de precipitações e mecanismos de escorregamentos próprios, que permitem ilustrar os diferentes mecanismos atuantes em cada caso. / Landslide in southeastern Brazil, are mainly caused by the effect of water from rainfall in infiltration process, in recent years has been increasing the number of natural disasters, while climate change that may exercising influence on the occurrence of extreme rainfall are recorded . Many slopes remain a large part of the year with unsaturated soil condition; however, changes in environmental conditions can cause sudden changes of suction, reducing or even deleting it and generate positive pore pressures. This dissertation presents a study about the influence of rainfall, considered extreme in the infiltration process and this one in the events regarded by their size of catastrophic landslides, which caused environmental, economic and social losses in Brazil. For the study were selected two events of shallow translational landslides relatively typical, considered catastrophic, one of them occurred in the Serra de Cubatão region on January 1985 and the other in the mountainous region of Rio de Janeiro on January 2011. Both events exhibit characteristics of rainfall and sliding mechanisms themselves, allowing illustrate the different mechanisms active in each case.

Page generated in 0.067 seconds