• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Feasibility of HALEU-loaded Breed-and-Burn Molten Salt Fast Reactor without Online Actinide Treatment / Genomförbarhet av HALEU-laddad ras- och brännsmält salt snabbreaktor utan onlineaktinidbehandling

Shi, Lei January 2023 (has links)
Molten Salt Fast Reactors (MSFRs) have prominent advantages such as fuel breeding, nuclear waste transmutation, and inherent safety. They are the only liquid-fueled nuclear reactors currently receiving significant attention as fourth-generation advanced nuclear systems. To address the challenges of short operational lifetimes and proliferation issues during online fuel processing, the breed-and-burn (B&B) MSFR is among the most promising advanced reactor types. In this study, a large-volume B&B MSFR model without online actinide element treatment was simulated and analyzed using the Monte Carlo simulation software SERPENT, considering different power levels and sizes of the inactive core. The results demonstrate that, under otherwise identical conditions, the operational lifetime and conversion ratio of MSFRs increase with decreasing power levels and increasing the size of the inactive core. These findings provide a foundation and theoretical basis for achieving B&B MSFRs without online actinide element treatment. / Smält saltsnabbreaktorer (MSFRs) har framträdande fördelar såsom bränsleförädling, transmutation av kärnavfall och inneboende säkerhet. De är de enda flytande drivna kärnreaktorerna som för närvarande får betydande uppmärksamhet som fjärde generationens avancerade kärnkraftverk. För att möta utmaningarna med korta driftstider och spridningsproblem vid online bränslebearbetning är rask-och-bränning (B&B) MSFR bland de mest lovande avancerade reaktortyperna. I denna studie simulerades och analyserades en storskalig B&B MSFR-modell utan behandling av aktinidelement online med hjälp av Monte Carlo simuleringsprogramvaran SERPENT, med hänsyn till olika effektnivåer och storlekar på den inaktiva kärnan. Resultaten visar att livslängden och konverteringsförhållandet för MSFRs ökar under annars identiska förhållanden i takt med att effektnivåerna minskar och storleken på den inaktiva kärnan ökar. Dessa resultat ger en grund och teoretisk grund för att uppnå B&B MSFRs utan behandling av aktinidelement online.
2

Development of an integrated tool to design, estimate cost and calculate annual performances of a solar power tower / Utveckling av ett verktyg som kan utforma, beräkna kostnaden och beräckna årliga avkastningar på ett smält salt soltorn

Blampain, Emil January 2018 (has links)
This Master Thesis consisted in realizing a tool able to design, estimate the cost and calculate annual yields of a molten salt solar power tower. Such tool was made for a company providing CSP equipment and plant solutions for engineering, engineering and procurement or also EPC of a solar power tower. The Company wishes to propose competitive plant configurations presenting a good trade-off between cost and revenues. The Company can oversee the EPC of a whole power plant or/and supply some components of the molten salt cycle and of the water/steam cycle. The tool models a large scale solar power tower with a thermal energy storage system on EBSILON®Professional 12.04, a thermodynamic software.   When launching a simulation, the tool sizes the components of the molten salt cycle (design phase) according to user’s inputs, the other components have their characteristics based on a reference project. Depending on the size of the components, the total cost is determined and the revenues over a year of operation are calculated (annual performance). When performing several simulations with different configurations, the Company can judge about the economic viability of plant configurations by comparing their LCOEs and NPVs.   The present document describes the result of the Master Thesis, that is to say the tool itself, what it contains and how it works. The methodology adopted to design the components is presented in depth, the way costs were calculated is exposed. The document explains the annual performance calculations and the simple operation strategy implemented. Finally, a technical and cost validation was carried out but it would require some further work to be complete. The design and cost calculations are performed in few seconds, the annual calculations take around 2-3h.   One main contribution of the Master Thesis is to show that designing, estimating costs and calculating annual performances is feasible in a single tool operating at a high level of detail. Using the tool during a solar power tower project could considerably facilitate the current process in place at the Company. It can also allow to compare an important number of configurations to determine a good techno-economic solution. / Denna uppsats bestod i att genomföra ett verktyg som kan utforma, beräkna kostnaden och beräkna årliga avkastningar på ett smält salt soltorn. Ett sådant verktyg gjordes för ett företag inom soltornsteknik, upphandling och konstruktion (SUK) som vill föreslå konkurrenskraftiga anläggningskonfigurationer som presenterar en bra avvägning mellan kostnad och intäkter. Företaget, samtidigt som det övervakar SUK för en hel kraftverk, levererar det också vissa komponenter i den smälta saltcykeln. Verktyget modellerar ett storskaligt soltorn med ett värmeenergilagringssystem på EBSILON®Professional 12.04, en termodynamisk programvara.   När en simulering startas, ritar verktyget komponenterna i den smälta saltcykeln (designfas) enligt användarens inmatningar, de andra komponenterna är baserade på ett referensprojekt. Beroende på komponenternas storlek bestäms den totala kostnaden och intäkterna över ett verksamhetsår beräknas (årlig prestation). När flera simuleringar görs med olika konfigurationer kan företaget bedöma sin ekonomiska lönsamhet genom att jämföra sina LCOE och NPV.   Det här dokumentet beskriver resultatet av masterprojektet, det vill säga själva verktyget, vad det innehåller och hur det fungerar. Den metod som antagits för att designa komponenterna presenteras grundligt samt hur kostnaderna beräknades. Dokumentet förklarar de årliga prestationsberäkningarna och den enkla operationsstrategin som implementerats. Slutligen genomfördes en teknisk och kostnadsvalidering, men det skulle kräva ytterligare insats för att göra arbetet fullständigt. Konstruktionen och kostnadsberäkningarna utförs på få sekunder, de årliga beräkningarna tar cirka 2-3 timmar.   Ett huvudbidrag av examensarbetet är att visa att utformning, uppskattning av kostnader och beräkning av årliga prestanda är möjlig i ett enda verktyg som arbetar på en detaljrik nivå. Att använda verktyget under ett soltornsprojekt kan betydligt underlätta den nuvarande processen på plats hos företaget. Det kan också göra det möjligt att jämföra ett viktigt antal konfigurationer för att bestämma en bra tekno-ekonomisk lösning.
3

Design and Optimization of a Sodium-Molten Salt Heat Exchanger for Concentrating Solar Power applications

Guccione, Salvatore January 2020 (has links)
Concentrating Solar Power (CSP) is one of the most promising renewable energybased electricity generation technologies to deal with the increasing demand of power consumption and environmental sustainability. With the aim of achieving the 2020 SunShot cost target for CSP of 60 USD/MWh, the United States Department of Energy presented, in May 2018, the Gen3 CSP initiative. In particular, the CSP Gen3 Liquid-Phase Pathway proposes to design a CSP system adopting liquid sodium as Heat Transfer Fluid (HTF) in the receiver, advanced high-temperature molten chloride salt as storage fluid and supercritical CO2 (sCO2) Brayton cycle as power cycle. Within this framework, the aim of this master thesis was to design the sodium-chloride salt Heat Exchanger (HX) by developing both a heat exchanger model and a sodiumsalt-sCO2 system model. To pursue these purposes, a completely new Modelica-based HX model was developed and added to the SolarTherm library. Furthermore, as an extension of earlier models, the sodium-salt-sCO2 CSP system (NaSaltsCO2System) was implemented in SolarTherm, by incorporating the HX model and linking it with other new and existing component models. As for the HX, a general model was developed for shell and tube heat exchangers, based on the TEMA guidelines, with the possibility of being customized in terms of media adopted, constraints, boundary conditions, and correlations. The model performs an optimization in order to select the internal geometry configuration that optimizes a user-defined objective-function. By employing the implemented HX model in the NaSaltsCO2System, the sodium-salt heat exchanger was designed aiming at minimizing the Levelized Cost of Electricity (LCOE), providing a complete geometry description, and an estimation of the performances and costs. The resulting NaSaltsCO2System model was found to be robust and able to perform annual simulations that allowed to estimate the energy performances of the CSP plant, as well as the LCOE. Considering the sodium-salt-sCO2 CSP system characterized by a receiver capacity of 543 MWth, 12 hours of Thermal Energy Storage (TES), and a 100 MWe power block, the LCOE resulted equal to 72.66 USD/MWh. The sodium-salt HX design that minimizes the LCOE resulted in a single-shell/single tube pass configuration, with vertical alignment, characterized by an overall height of 15 m, and a shell diameter of 1.8 m. It represents the 3.2% of the total capital cost of the plant. An interesting system-level optimization was then carried out on the combined receiver-heat exchanger block. It regarded the variation of the Log Mean Temperature Difference (LMTD) of the HX and highlighted the possibility to drop the LCOE down to 68.54 USD/MWh. The techno-economic investigations and the sensitivity analysis showed the flexibility and robustness of the HX model, as well as the importance of the NaSaltsCO2System. The latter lays the groundwork to explore potential improvements of this new generation of CSP systems, which can play a fundamental role in the future global energy mix. / Termisk solkraft (CSP) är en av de mest lovande elproduktionsteknologierna baserade på förnybar energi. Den kan bidra till hanteringen av den ökande efterfrågan på energi och miljömässig hållbarhet. I syfte att uppnå 2020 SunShot-kostnadsmålet för CSP på 60 USD/MWh presenterade USA:s energidepartement Gen3 CSPinitiativet. I synnerhet föreslår CSP Gen Liquid-Phase Pathway att utforma ett CSPsystem som använder flytande natrium som värmeöverföringsvätska i mottagaren, smält kloridsalt med hög temperatur som lagringsvätska, samt superkritisk CO2 (sCO2) Brayton-cykel som kraftcykel. Syftet för detta examensarbete var att utforma natriumkloridsaltets primära värmeväxlare genom att utveckla både en värmeväxlarmodell (HX) modell och en natriumsalt-sCO2-systemmodell. För att fullfölja dessa syften utvecklades HX-modellen först, sedan implementerades natriumsalt-sCO2 CSP-systemet NaSaltsCO2System. Båda verktygen utvecklades med hjälp av Modelica som programmeringsspråk. De finns nu tillgängliga i det öppna SolarTherm-biblioteket. När det gäller HX utvecklades en allmän modell för skal- och rörvärmeväxlare med möjligheten att anpassas när det gäller antagna medium, begränsningar, gränsvillkor och korrelationer. Dessutom utförde modellen en optimering för att välja den interna geometri-konfigurationen som optimerar en användardefinierad objektiv-funktion. Genom att använda den implementerade HX-modellen i NaSaltsCO2System designades natriumsalt-värmeväxlaren, vilket gav en fullständig konfiguration-beskrivning och en uppskattning av prestanda och kostnader. Den utvecklade NaSaltsCO2System-modellen visade sig vara robust och kapabel till att utföra simuleringar på årsbasis. Detta gjorde det möjligt att uppskatta CSP-anläggningens energiprestanda samt LCOE. Det utvecklade natriumsalt-sCO2 CSP-systemet som känneteckna des av en mottagarkapacitet på 543 MWth, 12 timmars TES och ett 100 MWe power block, resulterade i en LCOE på 72.66 USD/MWh. Natrium-salt HX-konstruktionen som minimerade LCOE resulterade i en enskalig/enkel rörpassningskonfiguration, med vertikal inriktning, kännetecknad av en total höjd av 15 m och en skaldiameter på 1.8 m. Det motsvarade 3.2% av anläggningens totala kapitalkostnad. Den mest intressanta systemoptimeringen genomfördes på det kombinerade blocket bestående av mottagare och värmeväxlare. Den behandlade variationen av HX:s LMTD och framhöll möjligheten att sänka LCOE till 68.54 USD/MWh. De teknisk-ekonomiska undersökningarna och känslighetsanalysen visade flexibiliteten och robustheten i HX-modellen, liksom vikten av NaSaltsCO2Systemet. Den senare lägger grunden för att utforska potentiella förbättringar av denna nya generation av CSP-system, som kan spela en grundläggande roll i den framtida globala energimixen.

Page generated in 0.0323 seconds