Spelling suggestions: "subject:"small colony ariants"" "subject:"small colony rariants""
1 |
Infections ostéo-articulaires à Staphylococcus aureus et Staphylococcus epidermidis : épidémiologie moléculaire et corrélation entre expression clinique et interactions hôte – bactérie / Pas de titre anglaisValour, Florent 15 December 2014 (has links)
Le genre Staphylococcus, première étiologie des infections ostéo-articulaires (IOA), est associé à des formes particulièrement difficiles à traiter. Trois mécanismes phénotypiques ont été rattachés à ce fort taux de chronicité et de rechutes, permettant l'adaptation bactérienne à la vie au sein du tissu osseux et un échappement au système immunitaire de l'hôte et à l'action des antibiotiques : la formation de biofilm, la persistance des staphylocoques dans les ostéoblastes, et l'évolution vers le morphotype de small colony variant (SCV). Longtemps considéré comme simple commensal cutanéo-muqueux, S. epidermidis est désormais reconnu comme un agent étiologique majeur des IOA sur matériel. Or, si le portage est universel, l'infection est un phénomène rare. A ce jour, aucun facteur génotypique n'a pu être associé au pouvoir invasif de certaines souches de portage. Notre travail a permis de montrer l'absence de pouvoir discriminant des capacités d'internalisation des ostéoblastes et de formation de biofilm entre souches commensales et invasives. Par ailleurs, un très faible taux d'internalisation de S. epidermidis dans les ostéoblastes a été mis en évidence, suggérant une importance moindre de ce mécanisme dans la physiopathologie des IOA à S. epidermidis par rapport aux IOA à S. aureus. Les principales études ayant porté sur les capacités d'interaction de S. aureus avec les ostéoblastes et de formation de biofilm ont cherché à en explorer les mécanismes à partir de souches de laboratoire ou de souches représentatives de quelques clones de S. aureus résistants à la méticilline (SARM). Dans notre cas, nous avons souhaité étudier une large collection de souches cliniques de S. aureus (n=95) sensible à la méticilline (SASM) responsables d'IOA aiguës ou chroniques. La caractérisation des fonds génétiques de cette collection, puis en élargissant notre étude à des collections de différents villes françaises, a d'abord permis de décrire une forte prévalence du clone émergent de SASM CC398 dans les IOA en France / Pas de résumé en anglais
|
2 |
Exploration de l'adaptation de Pseudomonas aeruginosa en biofilm : rôle dans l'échec des traitements antibiotiques / Pseudomonas aeruginosa adaptation in biofilm : impact in antibiotic failureSoares, Anaïs 04 October 2019 (has links)
Les infections en biofilm, notamment de dispositifs médicaux, mettent fréquemment en échec les traitements antibiotiques, imposant le retrait du matériel. Pseudomonas aeruginosa s’est imposé comme le pathogène-type des infections en biofilm. Pour explorer les déterminants de l’échec du traitement antibiotique en biofilm, un modèle de biofilm in vitro à P. aeruginosa exposé à des doses supra-inhibitrices d’antibiotiques a été développé. En culture planctonique, une bithérapie deciprofloxacine et d’amikacine permettait de prévenir la sélection de mutants résistants pour des souches de P. aeruginosa de sensibilité diminuée à la ciprofloxacine ou à l’amikacine par surexpression d’efflux. En biofilm, l’association de la ciprofloxacine et de l’amikacine, administrées simultanément ou séquentiellement, n’était pas supérieure aux monothérapies, permettant une réduction bactérienne, mais pas d’éradication complète du biofilm. Quelles que soient les souches (sauvages ou exprimant un efflux) et l’antibiotique, l’échec microbiologique en biofilm était lié à la sélection de cellules persistantes, tolérantes aux antibiotiques. La ciprofloxacine induisait des modifications importantes de la structure du biofilm avec une réduction considérable des exopolysaccharides, composants majeurs de la matrice. L’étude transcriptomique de gènes potentiellement impliqués dans la persistance suggérait que l’activation précoce de la réponse stringente pourrait être une des voies principales de la tolérance en biofilm sous ciprofloxacine. Enfin, la présence de « small colony variants » au sein du biofilm, dotés d’une capacité accrue de formation de biofilm, témoignait de la diversité des populations en biofilm. Ces travaux participent ainsi à une meilleure compréhension des mécanismes d’échappement aux antibiotiques de P. aeruginosa en biofilm. / Biofilm device-related infections can lead to antibiotic failure requiring frequent removal of medical device. Pseudomonas aeruginosa has emerged as the typical pathogen for biofilm infections. To explore the determinants of antibiotic failure in biofilm, an in vitro P. aeruginosa biofilm model exposed to suprainhibitory antibiotic concentrations was developed. In planktonic culture, the ciprofloxacin and amikacin combination prevented the selection of resistant mutants in ciprofloxacin and amikacinlow-level resistant P. aeruginosa strains overexpressing efflux. In biofilm, the ciprofloxacin and amikacin combination, used simultaneously or sequentially, didn’t show superior effects compared to monotherapies. Despite an initial bacterial reduction, biofilm eradication was not obtained. Regardless of wild-type or efflux strains and antibiotic regimen used, antibiotic failure was related to the selection of antibiotic-tolerant cells named “persisters”. Ciprofloxacin induced significant alterations in the biofilm structure, notably a considerable reduction in the exopolysaccharides of the matrix. The transcriptomic analysis of genes, potentially involved in persistence, suggested that early activation of the stringent response might be one of the main pathways for ciprofloxacin tolerance in biofilm. Finally, the emergence of "small colony variants" within the biofilm, characterized by enhanced ability to form biofilm, attested to biofilm heterogeneity. This work therefore contributes to a better understanding of how P. aeruginosa biofilms escape antibiotic.
|
3 |
Détermination du mode d’action et de la cible cellulaire de la tomatidine chez Staphylococcus aureusGuay, Isabelle January 2014 (has links)
Dans le but de mieux comprendre le mode d’action et de nous permettre de déterminer la cible de la tomatidine, nous avons dans un premier temps tenté de mieux circonscrire le spectre d’activité de la tomatidine. Grâce à ces travaux, nous sommes, en effet, maintenant en mesure de dire que la tomatidine possède une activité antibactérienne contre les espèces de la division des Firmicutes et plus précisément contre les bactéries de l’ordre des Bacillales dont font partie les genres Bacillus, Staphylococcus et Listeria. Nous avons également découvert, grâce à des expériences en collaboration avec le laboratoire d’Éric Marsault, qu’un analogue de la tomatidine (FC04-100) avait non seulement des propriétés similaires à la molécule naturelle, mais démontrait une activité par lui-même contre S. aureus à phénotype normal alors que la tomatidine possède uniquement une activité contre les « small colony variants ». De plus, alors que la tomatidine possède plutôt une activité bactériostatique contre la forme SCV de L. monocytogenes, le nouveau composé (FC04-100) démontre quant à lui, une forte activité bactéricide contre cette souche, tout comme contre la forme SCV des autres Bacillales.
Parallèlement, et toujours dans le but de rechercher le mode d’action et la cible de la tomatidine, nous avons obtenu, par passages successifs dans un milieu avec antibiotiques, des mutants de S. aureus à phénotype normal et des SCV résistants à la tomatidine ou à la combinaison tomatidine et gentamicine. Après le séquençage de ces mutants, l’étude de la position de ces mutations, à l’aide de différents logiciels de bio-informatique, nous a permis d’émettre un modèle-hypothèse quant au mode d’action et à la cible de la tomatidine. Selon les résultats que nous avons à ce stade-ci, la cible de la tomatidine chez S. aureus serait la sous-unité c de l’ATP synthase. Cependant, son mode d’action serait également dépendant de la fonctionnalité de la chaine de transport des électrons et donc de la polarisation membranaire et de la production de ROS intracellulaire, ce qui expliquerait la différence d’activité entre les souches à phénotype normal et les SCV.
|
4 |
Bacterial Resistance to Antimicrobial Peptides : Rates, Mechanisms and Fitness EffectsPränting, Maria January 2010 (has links)
The rapid emergence of bacterial resistance to antibiotics has necessitated the development of alternative treatment strategies. Antimicrobial peptides (AMPs) are important immune system components that kill microbes rapidly and have broad activity-spectra, making them promising leads for new pharmaceuticals. Although the need for novel antimicrobials is great, we also need a better understanding of the mechanisms underlying resistance development to enable design of more efficient drugs and reduce the rate of resistance development. The focus of this thesis has been to examine development of bacterial resistance to AMPs and the resulting effects on bacterial physiology. The major model organism used was Salmonella enterica variant Typhimurium LT2. In Paper I, we observed that bacteria resistant to PR-39 appeared at a high rate, and that the underlying sbmA resistance mutations were low cost or even cost-free. Such mutants are more likely to rapidly appear in a population and, most importantly, will not disappear easily once the selective pressure is removed. In paper II, we isolated protamine-resistant hem- and cydC-mutants that had reduced growth rates and were cross-resistant to several other antimicrobials. These mutants were small colony variants (SCVs), a phenotype often associated with persistent infections. One SCV with a hemC-mutation reverted to faster growth when evolved in the absence of protamine. In paper III, the mechanism behind this fitness compensation was determined, and was found to occur through hemC gene amplification and subsequent point mutations. The study provides a novel mechanism for reversion of the SCV-phenotype and further evidence that gene amplification is a common adaptive mechanism in bacteria. In Paper IV, the antibacterial properties of cyclotides, cyclic mini-proteins from plants, were evaluated. Cycloviolacin O2 from violets was found to be bactericidal against Gram-negative bacteria. Cyclotides are very stable molecules and may be potential starting points for development of peptide antibiotics.
|
Page generated in 0.0911 seconds