Spelling suggestions: "subject:"small animal imaging"" "subject:"tmall animal imaging""
1 |
Dynamic fluorescence imaging with molecular agents for cancer detectionKwon, Sun Kuk 15 May 2009 (has links)
Non-invasive dynamic optical imaging of small animals requires the
development of a novel fluorescence imaging modality. Herein, fluorescence imaging is
demonstrated with sub-second camera integration times using agents specifically
targeted to disease markers, enabling rapid detection of cancerous regions. The
continuous-wave fluorescence imaging acquires data with an intensified or an electronmultiplying
charge-coupled device. The work presented in this dissertation (i) assessed
dose-dependent uptake using dynamic fluorescence imaging and pharmacokinetic (PK)
models, (ii) evaluated disease marker availability in two different xenograft tumors, (iii)
compared the impact of autofluorescence in fluorescence imaging of near-infrared (NIR)
vs. red light excitable fluorescent contrast agents, (iv) demonstrated dual-wavelength
fluorescence imaging of angiogenic vessels and lymphatics associated with a xenograft
tumor model, and (v) examined dynamic multi-wavelength, whole-body fluorescence
imaging with two different fluorescent contrast agents.
PK analysis showed that the uptake of Cy5.5-c(KRGDf) in xenograft tumor
regions linearly increased with doses of Cy5.5-c(KRGDf) up to 1.5 nmol/mouse. Above 1.5 nmol/mouse, the uptake did not increase with doses, suggesting receptor saturation.
Target to background ratio (TBR) and PK analysis for two different tumor cell lines
showed that while Kaposi’s sarcoma (KS1767) exhibited early and rapid uptake of
Cy5.5-c(KRGDf), human melanoma tumors (M21) had non-significant TBR differences
and early uptake rates similar to the contralateral normal tissue regions. The differences
may be due to different compartment location of the target.
A comparison of fluorescence imaging with NIR vs. red light excitable
fluorescent dyes demonstrates that NIR dyes are associated with less background signal,
enabling rapid tumor detection. In contrast, animals injected with red light excitable
fluorescent dyes showed high autofluorescence.
Dual-wavelength fluorescence images were acquired using a targeted 111In-
DTPA-K(IRDye800)-c(KRGDf) to selectively detect tumor angiogenesis and an
untargeted Cy5.5 to image lymphatics. After acquiring the experimental data,
fluorescence image-guided surgery was performed.
Dynamic, multi-wavelength fluorescence imaging was accomplished using a
liquid crystal tunable filter (LCTF). Excitation light was used for reflectance images
with a LCTF transmitting a shorter wavelength than the peak in the excitation light
spectrum. Therefore, images can be dynamically acquired alternating frame by frame
between emission and excitation light, which should enable image-guided surgery.
|
2 |
Simulation and Analysis of an Adaptive SPECT Imaging System for Tumor EstimationTrumbull, Tara January 2011 (has links)
We have developed a simulation of the AdaptiSPECT small-animal Single Photon Emission Computed Tomography (SPECT) imaging system. The simulation system is entitled SimAdaptiSPECT and is written in C, NVIDIA CUDA, and Matlab. Using this simulation, we have accomplished an analysis of the Scanning Linear Estimation (SLE) technique for estimating tumor parameters, and calculated sensitivity information for AdaptiSPECT configurations.SimAdaptiSPECT takes, as input, simulated mouse phantoms (generated by MOBY) contained in binary files and AdaptiSPECT configuration geometry contained in ASCII text files. SimAdaptiSPECT utilizes GPU parallel processing to simulate AdaptiSPECT images. SimAdaptiSPECT also utilizes GPU parallel processing to perform 3-D image reconstruction from 2-D AdaptiSPECT camera images (real or simulated), using a novel variant of the Ordered Subsets Expectation Maximization (OSEM) algorithm. Methods for generating the inputs, such as a population of randomly varying numerical mouse phantoms with randomly varying hepatic lesions, are also discussed.
|
3 |
Développement de modalités d'imagerie in vivo pour l'oncologie expérimentale. / Development of in vivo imaging modalities for experimental oncologyPesnel, Sabrina 10 December 2010 (has links)
L’imagerie in vivo du petit animal est de plus en plus utilisée en pharmacologie pour identifier et caractériser l’activité de nouveaux agents anticancéreux.La première partie de ma thèse a consisté à développer des outils pour améliorer la quantification enbioluminescence. Une méthode, basée sur les caractéristiques spectrales des photons émis, a été établie pour corriger l’absorption tissulaire. La seconde, faisant appel aux méthodes de restauration d’images, avait pour but de corriger la diffusion pour augmenter la résolution. Dans un second temps, j’ai mis en place des modèles in vivo de tumeurs expérimentales bioluminescentes (un glioblastome intracérébral, un lymphome anaplasique à grandes cellules et un neuroblastome métastatique) en utilisant les méthodes d’imagerie décrites précédemment. Ces études ont permis d’étendre la caractérisation de l’activité préclinique d’un nouvel agent anticancéreux. L’objectif de la dernière partie de mon travail était de développer des sondes d’imagerie. La première sonde, un anticorps monoclonal anti-CD45 marqué avec un fluorochrome a permis la détection de cellules leucémiques humaines implantées chez la souris en utilisant l’imagerie de fluorescence. La seconde a été développée pour prédire l’entrée d’un agent anticancéreux, un conjugué spermine-podophyllotoxin, dans les cellules tumorales via les transporteurs des polyamines. La sonde synthétisée est une spermine à laquelle un groupement HYNIC a été ajouté afin de pouvoir lier un radioisotope : le Technétium 99m et ainsi réaliser un examen scintigraphique. Les résultats ont démontré la faisabilité d’une application préclinique de cette sonde. Ainsi à l’issu de cette thèse, les méthodes de traitement des signaux de bioluminescence développées sont disponibles pour améliorer l’application de l’imagerie optique en pharmacologie. Bien sûr des études supplémentaires sont encore nécessaires pour définir précisément dans quel contexte ces corrections seront les plus appropriées. / Small animal imaging is more and more used in pharmacology to identify and to characterize the activities of new antitumor agents. The first part of my thesis consisted in the development of new tools to improve the quantitation in bioluminescence. A method, based on spectral characteristics of emitted photons, has been established to correct tissue absorption. The second, using methods of image restoration had for objective to correct tissue scattering to increase the resolution. In a second part, I developed in vivo models of bioluminescent tumors (intracranial glioblastoma, a large cell anaplastic lymphoma and a metastatic neuroblastoma) using the imaging methods described previously. These studies allowed the characterization of the activity of a new antitumor agent. The aim of the last part was to develop imaging probes. The first, a monoclonal antibody antiCD45 labeled with a fluorochrome allowed the detection of human leukemic cells implanted in the mice using fluorescence imaging. The second was developed to predict the uptake of a antitumor agent, a spermine-podophyllotoxin conjugate, in tumor cells via the polyamine transport system. The synthesized probe is a spermine conjugated to a HYNIC group to bind a radioisotope: the Technetium 99m and to realize a scintigraphic examination. The results showed the feasibility of a preclinical use of this probe. So, at this end of this thesis, the developed methods of bioluminescent signal processing are available to improve the use of optical imaging in pharmacology. Of course, supplementary studies are necessary to define precisely in which context these corrections will be the most appropriate.
|
4 |
Phenotype characterization of lung structure in inbred mouse strains using multi modal imaging techniquesNamati, Jacqueline Thiesse 01 May 2009 (has links)
Research involved in modeling human lung disease conditions has provided insight into disease development, progression, and treatment. In particular, mouse models of human pulmonary disease are increasingly utilized to characterize lung disease conditions. With advancements in small animal imaging it is now possible to investigate the phenotypic differences expressed in inbred mouse strains in vivo to investigate specific disease conditions that affect the lung.
In this thesis our aim was to generate a comprehensive characterization of the normative mouse lung phenotypes in three of the most utilized strains of mice, C57BL/6, A/J, and BALB/c, through imaging techniques. The imaging techniques that we utilized in this research included micro-CT, a custom Large Image Microscope Array (LIMA) system for 3D microscopy, and classical histology. Micro-CT provided a non-destructive technique for acquiring in vivo and fixed lung images. The LIMA 3D microscopy system was utilized for direct correspondence of the gold standard histology images as well as to validate the anatomical structures and measurements that were extracted from the micro-CT images. Finally, complete lung histology slices were utilized for assessment of the peripheral airspace structures that were not resolvable using the micro-CT imaging system.
Through our developed imaging acquisition and processing strategies we have been able to successful characterize important phenotypes in the mouse lung that have not previously been known as well as identify strain variations. These findings will provide the scientific community with valuable information to be better equipped and capable of pursuing new avenues of research in investigating pulmonary disease conditions that can be modeled in the mouse.
|
5 |
Geo-Pet : a novel generic Organ-Pet for small animal organs and tissuesŞensoy, Levent 01 May 2016 (has links)
Reconstructed tomographic image resolution of small animal PET imaging systems is improving with advances in radiation detector development. However the trend towards higher resolution systems has come with an increase in price and system complexity. Recent developments in the area of solid-state photomultiplication devices like silicon photomultiplier arrays (SPMA) are creating opportunities for new high performance tools for PET scanner design.
Imaging of excised small animal organs and tissues has been used as part of post-mortem studies in order to gain detailed, high-resolution anatomical information on sacrificed animals. However, this kind of ex-vivo specimen imaging has largely been limited to ultra-high resolution μCT. The inherent limitations to PET resolution have, to date, excluded PET imaging from these ex-vivo imaging studies.
In this work, we leverage the diminishing physical size of current generation SPMA designs to create a very small, simple, and high-resolution prototype detector system targeting ex-vivo tomographic imaging of small animal organs and tissues.
We investigate sensitivity, spatial resolution, and the reconstructed image quality of a prototype small animal PET scanner designed specifically for imaging of excised murine tissue and organs. We aim to demonstrate that a cost-effective silicon photomultiplier (SiPM) array based design with thin crystals (2 mm) to minimize depth of interaction errors might be able to achieve sub-millimeter resolution. We hypothesize that the substantial decrease in sensitivity associated with the thin crystals can be compensated for with increased solid angle detection, longer acquisitions, higher activity and wider acceptance energy windows (due to minimal scatter from excised organs).
The constructed system has a functional field of view (FoV) of 40 mm diameter, which is adequate for most small animal specimen studies. We perform both analytical (3D-FBP) and iterative (ML-EM) methods in order to reconstruct tomographic images. Results demonstrate good agreement between the simulation and the prototype. Our detector system with pixelated crystals is able to separate small objects as close as 1.25 mm apart, whereas spatial resolution converges to the theoretical limit of 1.6 mm (half the size of the smallest detecting element), which is to comparable to the spatial resolution of the existing commercial small animal PET systems. Better system spatial resolution is achievable with new generation SiPM detector boards with 1 mm x 1 mm cell dimensions.
We demonstrate through Monte Carlo simulations that it is possible to achieve sub-millimeter spatial image resolution (0.7 mm for our scanner) in complex objects using monolithic crystals and exploiting the light-sharing mechanism among the neighboring detector cells. Results also suggest that scanner (or object) rotation minimizes artifacts arising from poor angular sampling, which is even more significant in smaller PET designs as the gaps between the sensitive regions of the detector have a more exaggerated effect on the overall reconstructed image quality when the design is more compact. Sensitivity of the system, on the other hand, can be doubled by adding two additional detector heads resulting in a, fully closed, 4π geometry.
|
6 |
Development of a radiative transport based, fluorescence-enhanced, frequency-domain small animal imaging systemRasmussen, John C. 15 May 2009 (has links)
Herein we present the development of a fluorescence-enhanced, frequency-domain radiative transport reconstruction system designed for small animal optical tomography. The system includes a time-dependent data acquisition instrument, a radiative transport based forward model for prediction of time-dependent propagation of photons in small, non-diffuse volumes, and an algorithm which utilizes the forward model to reconstruct fluorescent yields from air/tissue boundary measurements. The major components of the instrumentation include a charge coupled device camera, an image intensifier, signal generators, and an optical switch. Time-dependent data were obtained in the frequency-domain using homodyne techniques on phantoms with 0.2% to 3% intralipid solutions. Through collaboration with Transpire, Inc., a fluorescence-enhanced, frequency-domain, radiative transport equation (RTE) solver was developed. This solver incorporates the discrete ordinates, source iteration with diffusion synthetic acceleration, and linear discontinuous finite element differencing schemes, to predict accurately the fluence of excitation and emission photons in diffuse and transport limited systems. Additional techniques such as the first scattered distributed source method and integral transport theory are used to model the numerical apertures of fiber optic sources and detectors. The accuracy of the RTE solver was validated against diffusion and Monte Carlo predictions and experimental data. The comparisons were favorable in both the diffusion and transport limits, with average errors of the RTE predictions, as compared to experimental data, typically being less than 8% in amplitude and 7% in phase. These average errors are similar to those of the Monte Carlo and diffusion predictions. Synthetic data from a virtual mouse were used to demonstrate the feasibility of using the RTE solver for reconstructing fluorescent heterogeneities in small, non-diffuse volumes. The current version of the RTE solver limits the reconstruction to one iteration and the reconstruction of marginally diffuse, frequency-domain experimental data using RTE was not successful. Multiple iterations using a diffusion solver successfully reconstructed the fluorescent heterogeneities, indicating that, when available, multiple iterations of the RTE based solver should also reconstruct the heterogeneities.
|
7 |
Development of a radiative transport based, fluorescence-enhanced, frequency-domain small animal imaging systemRasmussen, John C. 15 May 2009 (has links)
Herein we present the development of a fluorescence-enhanced, frequency-domain radiative transport reconstruction system designed for small animal optical tomography. The system includes a time-dependent data acquisition instrument, a radiative transport based forward model for prediction of time-dependent propagation of photons in small, non-diffuse volumes, and an algorithm which utilizes the forward model to reconstruct fluorescent yields from air/tissue boundary measurements. The major components of the instrumentation include a charge coupled device camera, an image intensifier, signal generators, and an optical switch. Time-dependent data were obtained in the frequency-domain using homodyne techniques on phantoms with 0.2% to 3% intralipid solutions. Through collaboration with Transpire, Inc., a fluorescence-enhanced, frequency-domain, radiative transport equation (RTE) solver was developed. This solver incorporates the discrete ordinates, source iteration with diffusion synthetic acceleration, and linear discontinuous finite element differencing schemes, to predict accurately the fluence of excitation and emission photons in diffuse and transport limited systems. Additional techniques such as the first scattered distributed source method and integral transport theory are used to model the numerical apertures of fiber optic sources and detectors. The accuracy of the RTE solver was validated against diffusion and Monte Carlo predictions and experimental data. The comparisons were favorable in both the diffusion and transport limits, with average errors of the RTE predictions, as compared to experimental data, typically being less than 8% in amplitude and 7% in phase. These average errors are similar to those of the Monte Carlo and diffusion predictions. Synthetic data from a virtual mouse were used to demonstrate the feasibility of using the RTE solver for reconstructing fluorescent heterogeneities in small, non-diffuse volumes. The current version of the RTE solver limits the reconstruction to one iteration and the reconstruction of marginally diffuse, frequency-domain experimental data using RTE was not successful. Multiple iterations using a diffusion solver successfully reconstructed the fluorescent heterogeneities, indicating that, when available, multiple iterations of the RTE based solver should also reconstruct the heterogeneities.
|
8 |
3D Cryo-Imaging System For Whole MouseRoy, Debashish 29 December 2009 (has links)
No description available.
|
9 |
Construction et expérimentation d'un scanner bimodal TEP/TDM combiné de résolution spatiale submillimétrique pour petits animauxBergeron, Mélanie January 2015 (has links)
Résumé : La tomographie d’émission par positrons (TEP) permet une imagerie fonctionnelle et moléculaire qui peut bénéficier de l’utilisation conjointe de la tomodensitométrie (TDM), d’abord pour fournir un support anatomique aux images TEP, mais aussi pour permettre une correction plus précise des images TEP. Les appareils existants sont composés de deux scanners juxtaposés nécessitant un déplacement du sujet entre les deux acquisitions, ce qui peut causer des artéfacts de mouvement dans l’image fusionnée TEP/TDM. De plus, le mode de fonctionnement des scanners TDM, basé sur l’intégration du flux de rayons X, délivre une dose de radiations relativement élevée qui peut interférer avec la réalisation d’études/protocoles d’imagerie longitudinales. La réalisation d’un appareil TEP/TDM partageant le même système de détection basé sur le détecteur LabPET II pourrait remédier à ces problèmes. Dans un premier temps, le module de détection LabPET II a été caractérisé pour la TEP et la TDM. Les premières études d’imagerie TDM avec ce détecteur ont aussi été conduites avec un simulateur. Ce travail a permis de déceler un phénomène de diaphonie optique au sein du module de détection. La recherche d’une solution à ce problème a motivé l’évaluation de nouveaux types de réflecteurs métallisés, donc plus opaques, pour en limiter les effets. Le signal relativement faible détecté en TDM a par la suite mené à explorer des scintillateurs alternatifs présentant un rendement lumineux supérieur. L’un de ces scintillateurs permettra d’améliorer sensiblement les performances du scanner LabPET I et pourrait être retenu pour la génération future de scanners LabPET II. || Abstract : Positron emission tomography (PET) provides functional and molecular imaging capabilities that can benefit from joint use with computed tomography (CT), first to provide anatomical support to PET images, but also to allow a more precise correction of PET images. Existing devices are composed of two back-to-back scanners which require displacing the subject between the two acquisitions, possibly causing motion artifacts in the fused PET/CT images. Moreover, the operation mode of CT scanners based on the X-ray signal integration delivers a relatively high radiation dose that can interfere with longitudinal imaging studies/protocols. The realization of a PET/CT scanner sharing the same detection system for both 511 keV and X-ray photons and based on the LabPET II could remedy these problems. As a first step, a characterization of the detection module LabPET II was performed in PET and CT mode. The first CT imaging studies with this detector were also conducted with a simulator. This work allowed identifying an optical crosstalk phenomenon in the detection module. The search for a solution to this problem has motivated the evaluation of new types of metallized, more opaque, reflectors to limit crosstalk effects. The relatively low signal detected in CT led us to explore alternative scintillators having a higher light output. One of these scintillators will significantly improve the performance of the LabPET I scanner and could be used for the next generation of LabPET II scanners.
|
10 |
Développement de stratégies d'imagerie multimodalités pour la pharmacologie des agents anticancéreux / Development of multimodal imaging strategies for the pharmacology of anticancer agentsBrullé, Laura 24 May 2012 (has links)
L’imagerie préclinique dans le domaine de la cancérologie est en plein essor. Elle permet grâce à des modèles animaux représentatifs de cancers humains de comprendre les mécanismes de développement des pathologies et d’évaluer l’efficacité thérapeutique d’un nouveau traitement. Le principal objectif de ce travail a été de développer deux modèles orthotopiques de cancer (pancréas et colon) et d’évaluer des traitements de références ainsi qu’une nouvelle stratégie thérapeutique par plasma froid fibré appelée Plasma Gun. Les 2 modèles de cancers développés ont montré une bonne représentativité vis-à-vis des cancers humains, avec l’apparition de métastases à distance et la présence de zones hypoxiques. Le 5-fluorouracile pour le modèle orthotopique de carcinome colorectal HCT116-luc et la gemcitabine pour le modèle d’adénocarcinome pancréatique MIA PaCa2-luc ont induit à faible dose des effets discrets pouvant être mis en évidence grâce aux modalités d’imageries mises en oeuvre. Après validation de nos démarches expérimentales une nouvelle stratégie thérapeutique, le Plasma Gun, a été évaluée et a montré des effets significatifs sur l’inhibition de la croissance tumorale. Le second objectif de ma thèse a été de mettre en oeuvre des outils pour l’induction et la caractérisation des métastases osseuses ainsi que pour l’imagerie haute résolution de la vascularisation. D’une part, les métastases osseuses obtenues par injection de cellules PC3M-luc en intracardiaque ont été évaluées et quantifiées grâce à différentes modalités d’imagerie (bioluminescence, scintigraphie et scanner X). D’autre part, la réalisation d’une imagerie haute résolution de la vascularisation a été possible grâce à la technique de casting qui permet de recréer la structure 3D de l’architecture vasculaire suite à l’injection d’une résine dans la circulation. Les développements réalisés lors de cette thèse ont ainsi permis d’apporter des outils pour l’évaluation préclinique de nouvelles thérapies anticancéreuses. / Preclinical imaging in oncology is booming. It allows, using representative animal models of human cancers, to understand the mechanisms of development of pathologies and to assess the therapeutic efficiency of a new treatment. The main objective of this work was to develop two orthotopic models of cancer (pancreas and colon) and to assess on them the reference treatments as well as a new therapeutic strategy by non thermal plasma so called Plasma Gun. The two cancer models developed showed good representation in relation to human cancers, with the appearance of distant metastases and hypoxia. 5-fluorouracil for the HCT116-luc orthotopic model of colorectal carcinoma and gemcitabine for the MIA PaCa2-luc pancreatic adenocarcinoma model, have induced discrete effects at low dose wich can be detected thanks imaging modalities. After validation of our experimental steps, a new therapeutic strategy, Plasma Gun was evaluated and showed significant effects on tumor growth inhibition. The second objective was to carry out tools for the induction and the characterization of bone metastases and for high resolution imaging of the vasculature. On the one hand, bone metastases obtained by injection of PC3M-luc cells intracardially, was evaluated and quantified with different imaging modalities (bioluminescence, scintigraphy and Computed Tomography). And the other hand, the achievement of a high resolution imaging of vascularization, was possible by the casting method that restores the 3D structure of the vascular architecture following injection of a resin in the circulation.
|
Page generated in 0.0722 seconds