• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 79
  • 44
  • 21
  • 16
  • 12
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 220
  • 24
  • 20
  • 17
  • 17
  • 16
  • 14
  • 14
  • 14
  • 14
  • 13
  • 13
  • 13
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Structure and Solvation of Confined Water and Alkanols in Zeolite Acid Catalysis

Jason S. Bates (8079689) 04 December 2019 (has links)
Brønsted and Lewis acid sites located within microporous solids catalyze a variety of chemical transformations of oxygenates and hydrocarbons. Such reactions occur in condensed phases in envisioned biomass and shale gas upgrading routes, motivating deeper fundamental understanding of the reactivity-determining interactions among active sites, reactants, and solvents. The crystalline structures of zeolites, which consist of SiO<sub>4</sub> tetrahedra with isomorphously-substituted M<sup>4+</sup> (e.g., Sn<sup>4+</sup>, Ti<sup>4+</sup>) as Lewis acid sites, or Al<sup>3+</sup> with charge-compensating extraframework H<sup>+</sup> as Brønsted acid sites, provide a reasonably well-defined platform to study these interactions within confining voids of molecular dimension. In this work, gas-phase probe reactions that afford independent control of solvent coverages are developed and used to interpret measured rate data in terms of rate and equilibrium constants for elementary steps, which reflect the structure and stability of kinetically relevant transition states and reactive intermediates. The foundational role of quantitative kinetic information enables building molecular insights into the mechanistic and active site requirements of catalytic reactions, when combined with complementary tools including synthetic approaches to prepare active sites and surrounding environments of diverse and intended structure, quantitative methods to characterize and titrate active sites and functional groups in confining environments, and theoretical modeling of putative active site structures and plausible reaction coordinates.<br><div><br></div><div>Bimolecular ethanol dehydration to diethyl ether was developed as a gas-phase catalytic probe reaction for Lewis acid zeolites. A detailed mechanistic understanding of the identities of reactive intermediates and transition states on Sn-Beta zeolites was constructed by combining experimental kinetic measurements with density functional theory treatments. Microkinetic modeling demonstrated that Sn active site configurations undergo equilibrated interconversion during catalysis (404 K, 0.5–35 kPa C<sub>2</sub>H<sub>5</sub>OH, 0.1–50 kPa H<sub>2</sub>O) from hydrolyzed-open configurations ((HO)-Sn-(OSi≡)<sub>3</sub>---HO-Si) to predominantly closed configurations (Sn-(OSi≡)<sub>4</sub>), and identified the most abundant productive (ethanol-ethanol dimer) and inhibitory (ethanol-water dimer) reactive intermediates and kinetically relevant transition state (S<sub>N</sub>2 at closed sites). Mechanism-based interpretations of bimolecular ethanol dehydration turnover rates (per Lewis acidic Sn, quantified by CD<sub>3</sub>CN IR) enabled measuring chemically significant differences between samples synthesized to contain high or low densities of residual Si-OH defects (quantified by CD<sub>3</sub>CN IR) within microporous environments that confine Sn active sites. Hydrogen-bonding interactions with Si-OH groups located in the vicinity of Sn active sites in high-defect Sn-Beta zeolites stabilize both reactive and inhibitory intermediates, leading to differences in reactivity within polar and non-polar micropores that reflect solely the different coverages of intermediates at active sites. The ability of confining microporous voids to discriminate among reactive intermediates and transition states on the basis of polarity thus provides a strategy to mitigate inhibition by water and to influence turnover rates by designing secondary environments of different polarity via synthetic and post-synthetic techniques. </div><div><br></div><div>Despite the expectation from theory that Sn active sites adopt the same closed configurations after high-temperature (823 K) oxidation treatments, distinct Sn sites can be experimentally identified and quantified by the ν(C≡N) infrared peaks of coordinated CD<sub>3</sub>CN molecules, and a subset of these sites are correlated with first-order rate constants of aqueous-phase glucose-fructose isomerization (373 K). In contrast, <i>in situ</i> titration of active sites by pyridine during gas-phase ethanol dehydration catalysis (404 K) on a suite of Sn-zeolites of different topology (Beta, MFI, BEC) quantified the dominant active site to correspond to a different subset of Sn sites than those dominant in glucose-fructose isomerization. An extensive series of synthetic and post-synthetic routes to prepare Sn-zeolites containing Sn sites hosted within diverse local coordination environments identified a subset of Sn sites located in defective environments such as grain boundaries, which are more pronounced in Beta crystallites comprised of intergrowths of two polymorphs than in zeolite frameworks with un-faulted crystal structures. Sn sites in such environments adopt defect-open configurations ((HO)-Sn-(OSi≡)<sub>3</sub>) with proximal Si-OH groups that do not permit condensation to closed configurations, which resolves debated spectroscopic assignments to hydrolyzed-open site configurations. Defect-open Sn sites are dominant in glucose-fructose isomerization because their proximal Si-OH groups stabilize kinetically relevant hydride shift transition states, while closed framework Sn sites are dominant in alcohol dehydration because they stabilize S<sub>N</sub>2 transition states via Sn site opening in the kinetically relevant step and re-closing as part of the catalytic cycle. The structural diversity of real zeolite materials, whose defects distinguish them from idealized crystal structures and allows hosting Lewis acid sites with distinct local configurations, endows them with the ability to effectively catalyze a broad range of oxygenate reactions.</div><div><br></div><div>During aqueous-phase catalysis, high extra-crystalline water chemical potentials lead to intra-pore stabilization of H<sub>2</sub>O molecules, clusters, and extended hydrogen-bonded networks that interact with adsorbed intermediates and transition states at Lewis acid sites. Glucose-fructose isomerization turnover rates (373 K, per defect-open Sn, quantified by CD<sub>3</sub>CN IR) are higher when Sn sites are confined within low-defect, non-polar zeolite frameworks that effectively prevent extended water networks from forming; however, increasing exposure to hot (373 K) liquid water generates Si-OH groups via hydrolysis of siloxane bridges and leads to lower turnover rates commensurate with those of high-defect, polar frameworks. Detailed kinetic, spectroscopic, and theoretical studies of polar and non-polar titanosilicate zeolite analogs indicate that extended water networks entropically destabilize glucose-fructose isomerization transition states relative to their bound precursors, rather than influence the competitive adsorption of water and glucose at active sites. Infrared spectra support the stabilization of extended hydrogen-bonded water networks by Si-OH defects located within Si- and Ti-Beta zeolites, consistent with ab initio molecular dynamics simulations that predict formation of distinct thermodynamically stable clustered and extended water phases within Beta zeolites depending on the external water chemical potential and the nature of their chemical functionality (closed vs. hydrolyzed-open Lewis acid site, or silanol nest defect). The structure of water confined within microporous solids is determined by the type and density of intracrystalline polar binding sites, leading to higher reactivity in aqueous media when hydrogen-bonded networks are excluded from hydrophobic micropores.</div><div><br></div><div>Aluminosilicate zeolites adsorb water to form (H<sub>3</sub>O<sup>+</sup>)(H<sub>2</sub>O)<sub>n</sub> clusters that mediate liquid-phase Brønsted acid catalysis, but their relative contributions to the solvation of reactive intermediates and transition states remain unclear. Bimolecular ethanol dehydration turnover rates (per H<sup>+</sup>, quantified by NH<sub>3</sub> temperature-programmed desorption and <i>in situ</i> titrations with 2,6-di-<i>tert</i>-butylpyridine) and transmission infrared spectra measured on Brønsted acid zeolites under conditions approaching intrapore H<sub>2</sub>O condensation (373 K, 0.02–75 kPa H<sub>2</sub>O) reveal the formation of clustered, solvated (C<sub>2</sub>H<sub>5</sub>OH)(H<sup>+</sup>)(H<sub>2</sub>O)<sub>n</sub> intermediates, which are stabilized to greater extents than bimolecular dehydration transition states by extended hydrogen-bonded water networks. Turnover rates deviate sharply below those predicted by kinetic regimes in the absence of extended condensed water networks because non-ideal thermodynamic formalisms are required to account for the different solvation of transition states and MARI. The condensation of liquid-like phases within micropores that stabilize reaction intermediates and transition states to different extents is a general phenomenon for Brønsted acid-catalyzed alcohol dehydration within zeolites of different topology (CHA, AEI, TON, FAU), which governs the initial formation and structure of clustered hydronium-reactant and water-protonated transition state complexes. Systematic control of liquid-phase structures within confined spaces by gas-phase measurements around the point of intrapore condensation enables more detailed mechanistic and structural insights than those afforded by either kinetic measurements in the liquid phase, or structural characterizations of aqueous systems in the absence of reactants.</div>
182

Development of embedded atom method interatomic potentials for Ge-Sn-Si ternary and constituent binary alloys for modeling material crystallization

Acharya, Sudip 01 September 2020 (has links)
No description available.
183

Novel methods to synthesize aliphatic polyesters of vivid architectures

Srivastava, Rajiv January 2005 (has links)
Cross-linked films of ε-caprolactone (CL) and 1,5-dioxepan-2-one (DXO) having various mole fractions of monomers and different cross-link densities were prepared using 2,2’-bis-(-caprolactone-4-yl) propane (BCP) as cross-linking agent and Sn(Oct)2 as catalyst. Reaction parameters were examined to optimize the film-forming conditions. Networks obtained were elastomeric materials, easy to cast and remove from the mould. Effect of CL content and cross-link density on the final properties of the polymer network was evaluated. Thermal, mechanical and surface properties of the films were controlled by monomer feed composition and cross-link density. The films have potential to be used for tissue engineering applications as shown by preliminary cell growth studies. To avoid organometallic catalysts in the synthesis of poly(1,5-dioxepan-2-one) (PDXO), the enzyme-catalyzed ring-opening polymerization (ROP) of DXO was performed with lipase-CA (derived from Candida antarctica) as a biocatalyst. A linear relationship between number-average molecular weight (Mn) and monomer conversion was observed, which suggested that the product molecular weight can be controlled by the stoichiometry of the reactants. The monomer consumption followed a first-order rate law with respect to monomer and no chain termination occurred. Effect of reaction water content, enzyme concentration and polymerization temperature on monomer conversion and polymer properties was studied. An initial activation by heating the enzyme was sufficient to start the polymerization as monomer conversion occurred at room temperature afterwards. Terminal-functionalized polyesters and tri-block polyesters were synthesized by lipase-CA catalyzed ROP of DXO and CL in the presence of an appropriate alcohol as initiator. Alcohol bearing unsaturation introduced a double bond at the chain end of the polyester, which is a useful pathway to synthesize comb polymers. Dihydroxyl compounds were used as macro-initiators to form tri-block polyesters. The enzyme-catalyzed polymerization of lactones has been shown to be a useful method to synthesize metal-free polyesters. / QC 20101221
184

CONTINUUM THEORY AND EXPERIMENTAL CHARACTERIZATION FOR SOLID STATE REACTION-DIFFUSION PROBLEMS WITH APPLICATION TO INTERMETALLIC GROWTH AND VOIDING IN SOLDER MICROBUMPS

Sudarshan Prasanna Prasad (16543641) 14 July 2023 (has links)
<p>A wide variety of phase evolution phenomena observed in solids such as intermetallic growth at the junction between two metals subjected to high temperature, growth of oxide on metal surfaces due to atmospheric exposure and void evolution induced by electromigration in microelectronic devices for example, can be classified as being driven by reaction-diffusion processes. These phase evolution phenomena have a significant impact on material reliability for critical applications, and therefore, there is a requirement for modeling such reaction-diffusion driven phase evolution phenomena. It is difficult to analyze these due to the complexity of modeling the evolving interface between solid phases. Additional complexity is  due to the multi-physics nature of the diffusive and reactive processes. Diffusion in solids is driven by a variety of stimuli such as current, temperature and stress, in addition to the chemical potential. Therefore, there is a need for a model that accounts for the influence of such factors on phase evolution. In this thesis,  a generalized continuum based reaction-diffusion theory for phase and void evolution in solid state is developed. The derivation starts off with generalized interface balance laws for mass, momentum and energy. The thermodynamic entropy inequality for irreversible phase growth is derived for arbitrary anisotropic and inhomogeneous surface stress. These interface relations are combined with governing relations in the material bulk for the temperature, stress, electrical and concentration fields, to develop a general model capable of analyzing and describing phase evolution in solids. This theory is then applied to a variety of intermetallic phase and void evolution phenomena observed in microelectronics.</p> <p><br></p> <p>Electromigration induced voiding in thin metal films is an example of phase evolution that is an important reliability concern in microelectronics. Studies have reported that the electromigration induced void growth rate is inversely related to the adhesion of metal thin films with the base and capping layers. Electromigration experiments are performed on fabricated test devices with Cu thin films with SiNx and TiN capping layers. The observations from electromigration experiments on thin Cu metal films at a range of temperatures indicate that the contribution of interface adhesion strength to electromigration resistance decreases with an increase in temperature. The generalized reaction-diffusion theory developed here is modified to develop an expression to account for the effect of base and passivation layer adhesion and temperature on electromigration resistance of metal thin films. The void growth rates measured in the experiments are analyzed with the expression for void growth rate to estimate the interface adhesion strength for the Cu-TiN and Cu-SiNx interfaces. </p> <p><br></p> <p>Demand for increased bandwidth, power efficiency and performance requirements have resulted in a trend of reduction in size and pitch of Cu pillar-Solder micro-bump interconnects used in heterogeneously integrated packages. As the size of micro-bumps reduce, reliability challenges due to voiding in the solder joint and the growth of Cu-Sn intermetallics are observed. The underlying reaction-diffusion mechanisms responsible for Cu-Sn intermetallic growth and voiding in solder joints are unclear at this stage and require further investigation. The current practice of material characterization in micro-bumps involve destructive cross-sectioning and polishing of the micro-bumps after testing. These processes result in loss of continuity in the samples used for the experiments, and material removal due to abrasive polishing might result in a loss of critical information. Therefore, a novel test device capable of non-destructive characterization of Cu-Sn intermetallic growth and voiding in sub-30 micron size micro-bumps is designed and fabricated in this work. The fabricated test devices are subjected to thermal aging for over 1000 h and the underlying reaction-diffusion mechanisms behind the intermetallic phase and void evolution are investigated. </p> <p><br></p> <p>A reaction-diffusion mechanism is proposed explaining the evolution of  various Cu-Sn intermetallic phases and solder joint void observed from experiments. Using the reaction-diffusion mechanism inferred from the thermal aging experiments and the generalized reaction-diffusion theory for phase evolution developed in this thesis, a sharp interface model is developed for the evolution of Cu-Sn intermetallic phases and solder joint void. The diffuse interface phase field equivalent equations for the sharp interface model governing equations are developed using matched formal asymptotic analysis. The evolution of Cu-Sn intermetallic phase and voids in the solder joint are simulated for different temperatures and current density to demonstrate the validity of the phase field and sharp interface models.  </p> <p><br></p>
185

Near-Field Investigations of the Anisotropic Properties of Supported Lipid Bilayers

Johnson, Merrell A. 24 July 2012 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The details of Polarization Modulation Near-Field Scanning Optical Microscopy (PM-NSOM) are presented. How to properly calibrate and align the system is also introduced. A measurement of Muscovite crystal is used to display the capabilities of the setup. Measurements of supported Lβʹ 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) lipid bilayers are presented, emphasizing how it was tooled in exploiting the anisotropic nature of the acyl chains. A discussion of how the effective retardance (ΔS = 2π( n_e-n_o )t/λ) and the direction of the projection of the acyl chains (θ) are measured simultaneously is given, (where t is the thickness of the bilayer and λ is the wavelength of light used). It is shown from ΔS the birefringence (ne-no) of the bilayer is determined, by assuming the acyl chain tilt with respect to the membrane's normal to be ϕ ≈ 32. Time varying experiments show lateral diffusions of ~ 2 x 10-12 cm2/s. Temperature controlled PM-NSOM is shown to be a viable way to determine the main phase transition temperature (Tm) for going from the gel Lβʹ to liquid disorder Lα state of supported DPPC bilayers. A change of ΔS ~ (3.8 +/- 0.3 mrad) at the main phase transition temperature Tm (≈41^o C) is observed. This agrees well with previous values of (ne-no) and translates to an assumed <ϕ> ~ 32^o when T < Tm and 0^o when T > Tm. Evidence of supper heating and supper cooling will be presented, along with a discussion of the fluctuations that occur around Tm. Finally it is shown how physical parameters such as the polarizability are extracted from the data. Values of the transverse (αt) and longitudinal (αl) polarizabilites of the acyl chains are shown to be, αt = 44.2 Å3 and αl = 94.4 Å3, which correspond well with the theoretical values of a single palmitic acid (C16) αt = 25.14 Å3 and αl = 45.8 Å3.
186

The Smallest Base and Precious Metal Deposits in the World: Vapor Transport and deposition of Co-Cu-Sn-Ag alloys in vesicles

Hunter, Elizabeth Adele Outdoor 10 July 2007 (has links) (PDF)
Metallic bronze-Co-Ag alloys ranging from1-90 µm have been discovered in bomb and lava vesicles from the mafic volcanoes of Kilauea in Hawaii and Vesuvius, Stromboli and Etna in Italy. It is inferred that the metals for these alloys were transported (in part) as chloride complexes, and that the metal ratios in the alloys may be a function of S/Cl. Alloy compositions in each system are extremely heterogeneous with Co concentrations from 1% to 94%, Cu from 2% to 89%, Sn from 1% to 22% and Ag from 0.5% to 42%. Maximum abundances (in wt%) of other trace or minor elements are, Fe (3.0), Zn (0.11), As (0.50), Pd (0.05), Pt (0.05), Au (0.05), Hg (0.10) and Pb (.13) Spot analyses and element maps of alloy grains reveal that three major exsolved components exist. They are bronze, Co, and Ag. Kilauean alloys are dominantly Cu-Sn (bronze) with little Co and Ag while a systematic decrease in the bronze component and an increase in Co occurs in grains from Stromboli to Etna to Vesuvius. Element maps show a covariance of Cu and Sn while Co and Ag concentrations vary independently. Element maps of the alloys also reveal that chlorides are occasionally present in the same vesicles as the alloys. Sulphur content of the metal alloys rarely exceed about 0.4 wt%. Electron back-scatter diffraction (EBSD) was employed for lattice characterization of the exsolved phases and shows a FCC structure for the Cu-Sn section of the alloys. Cu-Sn alloys high in Sn are successfully indexed using the Cu6Sn5 pattern (hexagonal), even though the Sn:Cu ratio of our alloys is considerably lower than 5:6. Cu-Sn alloys containing significant subequal amounts of Co and Fe (≈5 wt% each) indexes as body-centered cubic (BCC). The presence of alloys suggests metal transport as complexes in a vapor phase before being reduced to native metals. Our current model for the origin of the alloys suggests that the metals are transported to vesicles as chlorides and then deposited as sulfides and/or native metals. Oxidation and removal of most of the S then occurs. This data suggests that in some circumstances Cu-Sn-Co and Ag are readily partitioned into escaping magmatic volatiles during quenching of mafic magma. Further examination into vesicle-hosted alloys may confirm that the ratio of Cu, Ag, Au, Zn, and Pb in vesicles reflects the ratio of available metals present in the magma and in subsequent ore deposits.
187

Interfacial Transitions and Microstructure Evolution of Materials

Lucas D Robinson (12156105) 25 April 2023 (has links)
<p>    </p> <p>In this thesis, a thermodynamically consistent phase field formulation was developed to identify the physical origin of interfacial transitions that drive macroscopic phenomena, start- ing at the single-particle length scale and building up to the polycrystalline length scale. At the single-particle length scale, the framework identified two interfacial phases that are stable at the surface of Sn nanoparticles: 1) a disordered interfacial phase, i.e., the experimentally observed premelted surface layer; and 2) an ordered surficial phase displaying a remnant de- gree of order in fully melted particles. Regimes of melting behavior as a function of particle size and temperature are discussed. To bridge the gap between single-particle and densified polycrystals, an analytical model was developed to capture the physical driving forces for densification during electric field-assisted sintering. Here, the model acknowledges the struc- tural contributions of particle-particle interfaces to the strength of mechanical, electrical, and surficial driving forces for densification, and shows good agreement with experimental flash sintering data. Finally, the theory was applied to polycrystalline LiCoO<sub>2</sub> (LCO) and shows that the experimentally observed metal-insulator transition is driven by grain bound- ary lithium segregation, the interfacial misorientation, and the size of the abutting grains. A critical misorientation as a function of the macroscopic lithium content exists above which the grain boundaries undergo a metal-insulating transition, suggesting that the fabrication of textured LCO microstructures will delay the metal-insulator transition. </p>
188

Development and characterization of Ti-Sn-SiC and Ti-Nb-SiC composites by powder metallurgical processing.

Mathebula, Christina 08 1900 (has links)
M. Tech. (Department of Metallurgical Engineering, Faculty of Engineering Technology), Vaal University of Technology. / This work is an investigation in the development and characterisation of porous Ti-Sn-SiC and Ti-Nb-SiC composites. Pure Titanium (Ti), Tin (Sn), Niobium (Nb) and Silicon carbide (SiC) powders were used as starting materials. The Ti-Sn-SiC and Ti-Nb-SiC composites were produced by powder metallurgy (PM) press-and-sinter route. The Sn is an α-phase stabilizer while Nb is a β-phase stabilizer in Ti alloys. A systematic study of binary Ti-Sn and Ti-Nb alloys was conducted with the addition of SiC particles. The addition of Sn influences the microstructure of the titanium alloy. With increasing the percentage of Sn content, the density of the samples decreases on the Ti-Sn alloys. An increase in the Sn content from 10 to 25 wt. % content resulted in decreased hardness. The Ti-Sn binary revealed stability of the HCP phase with increasing composition of the Sn content. The porous structures of the Ti-Sn-SiC composites were evenly distributed throughout the materials. The sintered densities increase from 94.69% to 96.38%. XRD analysis detected the HCP crystal lattice structure for the Ti5.4Sn3.8SiC and Ti5.6-Sn3.8-SiC composites. XRD pattern of the Ti5.8-Sn3.8-SiC reveals both the HCP and FCC crystal structures. The HCP phase has lattice parameters a= 2.920 Å; c=4.620 Å with smaller c/a ratio of 1.589. Additionally, FCC lattice parameter a=5.620 Å Fm-3m # 225 was obtained both for Ti5.8Sn3.8SiC and Ti6.0Sn3.8SiC XRD patterns. On the other hand, Optical microscopy analysis of the Ti-Nb alloys revealed the equiaxed grains composed of the light β-phase segregating on the grain boundaries. The Ti9Nb1 has low Vickers hardness of all alloys while Ti8Nb2 and Ti7.5Nb2.5 alloys are harder due to high amount of Nb content. Generally, the densities of the Ti–Nb alloys increased with increasing Nb content. HCP and BCC phases have the lattice parameters a = 2.951 Å, c = 4.683 Å and 3.268 Å, respectively. An HCP (α′) phase was detected in the Ti8.5Nb1.5 alloy with lattice parameters a = 5.130 Å, c = 9.840 Å while a BCC phase had a = 3.287 Å. The sintered Ti8Nb2 alloy also had the α′-phase with a = 5.141 Å, c = 9.533 Å and BCC phase with a = 3.280 Å lattice parameters. On the contrary, the Ti7.5Nb2.5 alloy formed the α′-phase of a = 5.141 Å, c = 9.533 Å and BCC with a = 3.280 Å lattice parameters. For the 10 and 15 wt.% Nb alloys, very porous structures were observed. The pores appear spherical and widely distributed. As the Nb content is increased to 20 wt.% (Ti7Nb2SiC) and 25 wt.% (Ti7Nb2.5SiC), porosity was minimized. The sintered densities of the Ti-Sn alloys are decreasing from 95.90% to 92.80% with increased amount of Sn in the Ti, while the sintered densities of Ti-Sn-SiC are increasing from 94.69% to 96.38%. The high porosity, which developed in Ti7Nb1SiC and Ti7Nb2.5SiC, affected the densities of these composites. The sintered densities of Ti-Nb alloys are increasing from 92.08% to 97.65% with increased amount of Nb in the Ti. In terms of hardness Ti7Nb1SiC and Ti7Nb2.5SiC resulted in the lowest while Ti7Nb1.5SiC and Ti7Nb2SiC composites were 511.74 HV and 527.678 HV. The porosity levels were increased by the addition of SiC in the Ti-Sn-SiC and Ti-Nb-SiC composites. The XRD analysis revealed phase transformation on the Ti-Nb alloys and Ti-Nb-SiC composites.
189

Whisker Growth Induced by Gamma Radiation on Glass Coated with Sn Thin Films

Killefer, Morgan January 2017 (has links)
No description available.
190

Hydrodynamique des systèmes minéralisés péri-granitiques : étude du gisement à W-Sn-(Cu) de Panasqueira (Portugal) / Hydrodynamics of peri-granitic mineralized systems : study of the W-Sn-(Cu) Panasqueira ore deposit

Launay, Gaëtan 19 December 2018 (has links)
Les gisements à Sn-W de type veine et greisen sont des systèmes magmatiques-hydrothermaux dont l’exploitation fournit une part importante de la production mondiale de tungstène et qui représentent également une source importante d’étain. La formation de ces gisements résulte d’un continuum de processus magmatiques et hydrothermaux et implique un transport efficace et la focalisation des fluides minéralisateurs. Cette étude vise àaméliorer la compréhension des processus hydrodynamiques et géologiques impliqués lors du transport et du dépôt de métaux conduisant à la formation de ces gisements. Nous avons réalisé une étude pluridisciplinaire combinant (i) travail de terrain (étude géologique et structurale), (ii) reconstruction des paléo-circulations hydrothermales via l’analyse texturale des bandes de croissance des tourmalines, (iii) détermination expérimentale des changements de perméabilité induits par la greisenisation et (iv) modélisation numérique des écoulements péri-granitiques prenant en compte l’évolution de la perméabilité dynamique lors des interactions fluide-roche. Cette méthodologie a été appliquée au cas du gisement W-Sn-(Cu) de Panasqueira, qui constitue un site de référence pour étudier les processus magmatiques e thydrothermaux conduisant à la formation de gisements à Sn-W de classe mondiale. Les résultats obtenus démontrent que l’expulsion des fluides magmatiques minéralisés a déclenché la greisenisation des parties apicales (coupoles etapex) de l’intrusion granitique, entraînant la création de porosité (~ 8,5%) qui améliore significativement la perméabilité(de 10-20 à 10-17 m²) au sein du greisen massif composant le toit de l’intrusion. Le développement de ce niveau perméable constitue un drain important favorisant l'expulsion et la focalisation des fluides magmatiques minéralisateurs exsolvés lors de la cristallisation du granite sous-jacent. Cette focalisation des décharges hydrothermales (i) améliore significativement le transport des métaux, et (ii) favorise l'établissement de conditions de pression de fluide élevées qui couplées aux contraintes régionales compressives causent l'ouverture des veines minéralisées au toit de l’intrusion.Cette étude souligne l’importance des rétrocontrôles entre perméabilité dynamique et altération hydrothermale. Ces derniers constituent des mécanismes majeurs permettant d’améliorer significativement la circulation des fluides minéralisateurs et donc la formation de gisements hydrothermaux de grandes tailles / The vein and greisen Sn-W deposits are magmatic-hydrothermal systems that provide an important part of theworld W production and represent an important source of Sn. The formation of these deposits involves continuum ofmagmatic-hydrothermal processes and implies the transfer and the focusing of a large amount of mineralizing fluids. Thisstudy aims to improve understanding of hydrodynamic and geological processes involved during the transport and thedeposition of metals leading to the formation of these deposits. We have performed a complete study combining (i) fieldworks (geological and structural studies), (ii) fluid flow reconstruction via the textural analysis of tourmaline growth bands,(iii) experimental determination of permeability changes during greisenization, and (iv) numerical modeling of peri-graniticfluid flow accounting for magmatic fluid production and dynamic permeability related to fluid-rock interactions. Thismethodology was applied in the case of the world-class W-Sn-(Cu) Panasqueira deposit, which represents a referencesite to study magmatic-hydrothermal processes leading to the formation of large vein and greisen deposit. Our resultsdemonstrate that the releasing and the expulsion of ore-bearing magmatic fluids triggered greisenization of the apicalpart of granite intrusion, which caused generation of porosity (~8.5%) and therefore a significant increase of permeability(from 10-20 to 10-17 m²) in massive greisen composing the granite’s roof. The development of this permeable pathwayconstitutes an important drain promoting the expulsion and the focusing of magmatic fluids produced during thecrystallization of the underlying granite. This enhancement of magmatic fluids expulsion (i) promotes significantly fluidflux and transfer of metals, and (ii) the establishment of high fluid pressure conditions, which coupled with the regionalcompressive crustal regime, triggered the opening of mineralized veins above the granite roof. Finally, this studyemphasizes that reactive hydrothermal fluids are able to generate their own pathways in initially impermeable rocks. Thisprocess represents an important mechanism to enhance fluid flow and promote the formation of large hydrothermaldeposits.

Page generated in 0.0296 seconds