• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Origine, évolution et exhumation des leucogranites peralumineux de la chaîne hercynienne armoricaine : implication sur la métallogénie de l'uranium / Origin, evolution and exhumation of the peraluminous leucogranites from the Armorican Hercynian belt : implication for uranium metallogenesis

Ballouard, Christophe 02 December 2016 (has links)
Les granites peralumineux sont les acteurs principaux de la différentiation de la croûte continentale et représentent un enjeu sociétal important car ils sont associés à de nombreux gisements métallifères. Dans la chaîne hercynienne européenne, la majorité des gisements hydrothermaux d'uranium (filons ou épisyenites) sont associés à des leucogranites peralumineux d'âge tardi-carbonifère. Ainsi dans le Massif armoricain, 20000 t d'uranium (U) (~20% de la production historique française), ont été extraites des gisements associés aux leucogranites de Mortagne, Pontivy et Guérande. L'objectif de ce travail est de mieux comprendre le cycle de l'uranium dans la chaîne hercynienne armoricaine depuis la source des leucogranites, leur évolution et leur mise en place dans la croûte supérieure jusqu'à leur lessivage par des fluides, la formation des gisements puis leur exhumation en sub-surface. Dans ce but, des données pétro-géochimiques, géochronologiques et thermochronologiques ont été obtenues sur les leucogranites de Guérande, Pontivy et leurs gisements d'uranium associés. Les leucogranites de Guérande et de Pontivy se sont mis en place, respectivement, à ca. 310 Ma dans une zone de déformation extensive dans le domaine interne de la chaîne et ca. 315 Ma dans le domaine externe le long du cisaillement sud armoricain (CSA), une faille décrochante d'échelle lithosphérique. Les deux leucogranites sont issus d'un faible taux de fusion partielle de métasédiments détritiques et d'orthogneiss peralumineux, la fusion de ces derniers ayant vraisemblablement joué un rôle majeur dans la richesse en uranium des leucogranites. La fusion de la croûte continentale dans la zone interne de la chaîne a été induite par l'extension tardi-orogénique alors que la fusion de la croûte mais aussi du manteau dans la zone externe était probablement contrôlée par une déformation décrochante diffuse. La cristallisation d'oxydes d'uranium magmatiques dans les facies les plus évolués des leucogranites au moment de leur mise en place a été vraisemblablement rendue possible grâce à l'action combinée de la cristallisation fractionnée et d'une activité magmatique-hydrothermale diffuse. De ca. 300 Ma à 270 Ma, une activité tectonique fragile le long du CSA et des détachements a permis l'infiltration de fluides météoriques oxydants en profondeur induisant la mise en solution des oxydes d'uranium des leucogranites. Ensuite, les fluides ont précipité leur U dans des failles ou des fentes de tension à proximité du contact avec des lithologies sédimentaires avec un caractère réducteur variable. Les leucogranites étaient toujours en profondeur à des températures supérieures à 120°C au moment de la formation des gisements et leur exhumation en sub-surface n'est pas enregistrée avant le Trias ou le Jurassique. Ce modèle métallogénique n'est probablement pas exclusif au Massif armoricain car la période de formation des gisements d'U dans la région entre 300 et 270 Ma est la même que dans l'ensemble de la chaîne hercynienne européenne. / Peraluminous leucogranites are the principal actors for the differentiation of the continental crust and play an important economic role because they are commonly associated with significant metalliferous deposits. Most hydrothermal uranium (U) deposits (vein or episyenite types) from the European Hercynian belt are spatially associated with Carboniferous peraluminous leucogranites and in the French Armorican Massif (western part of the European Hercynian belt) 20000 t of U (~20 % of the French production) were extracted from the deposits associated with the Mortagne, Pontivy and Guérande leucogranites. The objective of this work is to improve our knowledge about the U cycle in the Armorican Hercynian Belt from the leucogranites sources, their evolution and emplacement in the upper crust to U leaching, deposit formation and leucogranites exhumation at the subsurface level. For that purpose, petro-geochemical, geochronological and thermochronological data were obtained on the Guérande and Pontivy leucogranites as well as their spatially associated U deposits. The Guérande leucogranite was emplaced ca. 310 Ma ago in an extensional deformation zone in the internal domain of the belt whereas the Pontivy leucogranite was emplaced ca. 315 Ma ago in the external domain along the South Armorican Shear Zone (SASZ), a lithospheric scale wrench fault. Both leucogranites were formed by a low degree of partial melting of detrital metasediments and peraluminous orthogneisses; the fusion of the latter probably played a major role in the generation of U rich leucogranites. Partial melting of the crust in the internal zone of the belt was triggered by late orogenic extension whereas partial melting of the crust but also the mantle in the external zone was likely controlled by pervasive wrenching. The crystallization of magmatic uranium oxides in the most evolved leucogranitic facies was induced by fractional crystallization and probably enhanced by magmatic-hydrothermal processes. From ca. 300 to 270 Ma, a fragile tectonic activity along detachments and the SASZ, allowed for the infiltration at depth of meteoric oxidizing fluids, able to dissolve magmatic uranium oxides in the leucogranites. These fluids have then precipitated their U in faults or tension gashes close to the contact with sediments having a variable reducing character. The leucogranites were at depth above 120°c during the formation of U deposits and the exhumation of these intrusions did not occur before the Trias or the Jurassic. The proposed metallogenic model is likely not exclusive to the Armorican Massif as the timing of U deposits formation in the region from ca. 300 to 270 Ma is similar to the main U mineralizing event in the whole European Hercynian belt.
2

Analyse structurale, pétrologique et métallogénique de la minéralisation aurifère néoprotérozoïque du Granite de Passa Três, Campo Largo – PR, Sud du Brésil : implications sur les relations granite/minéralisation / Strutural, petrological and metellogenic analysis of the Passa Tres granite neoproterozoic gold deposit, Campo Largo – PR, Southern Brazil : Implications on the relationships granite/mineralisation

Dressel, Bárbara 27 July 2018 (has links)
Le Granite Passa Três est situé à l'Est de l'Etat du Paraná, au Sud du Brésil, et est allongé selon une direction NNE-SSW. Sa mise en place se fait au cœur des metapélites mesoprotérozoïques du Groupe Açungui (Province Mantiqueira). La minéralisation d’or du Granite Passa Três est composée par des veines de quartz contenant des quantités variables de fluorite, sulfures et carbonates. Les objectifs principaux de ce travail de thèse sont : de comprendre le modèle de formation du système de veines minéralisées en prenant en compte les relations entre magmatisme, hydrothermalisme, déformation et minéralogie à la fois dans l’espace et dans le temps ; la caractérisation de la nature, de la source et des conditions de dépôt des fluides ; et la caractérisation du modèle métallogénique de ce gisement singulier. Pour arriver à ces objectifs, les méthodes utilisées seront, en sus de la géologie structurale et de terrain : la pétrographie, la géochronologie U-Pb (LA-ICP-MS) sur zircon et 40Ar-39Ar sur muscovite, la microscopie électronique à balayage (MEB), la microsonde électronique, la fluorescence X (XFR), l’analyse isotopique du soufre (δ34S) et l’analyse microthermométrique et RAMAN des inclusions fluides. Les données structurales ont montré la coexistence de deux systèmes principaux de filons minéralisés, l’un N-S et l’autre E-W, avec des pendages de 60-75°W et 45-70°S, respectivement. Les deux systèmes sont interprétés comme contemporains et conjugués. Les corps minéralisés forment des géométries sigmoïdales qui résultent de l’ouverture en pull-aparts résultant de mouvements en faille normale le long de plans de glissement à faible pendage. Le fort pendage des structures minéralisées s’explique par l’enveloppe globale formée par la succession des pull-aparts. Quatre étapes minéralogiques sont à l’origine de la formation du système minéralisé : phase 1 [qtz 1 + fl], phase 2a [qtz 2 + py 2a ± or ± cpy ± aik ± fl ± sph ± musc], phase 2b [qtz 2 + py 2b + or + cpy + aik + ank ± sph ± fl ± musc] et phase 3 [qtz 3 + ank + calc + molyb ± aik ± musc ± fl]. L’or se trouve dans la forme d’or invisible et d’or natif dans des fractures qui affectent les pyrites des phases 2a et b, systématiquement associé avec la chalcopyrite et l’aikinite. L’altération associée à la minéralisation inclue des assemblages composés par muscovite/quartz/pyrite (altération du type greisen) et séricite/carbonate/clinochlore (altération phyllique). Les valeurs δ34S des pyrites (de -0.1‰ à 1.1‰) indiquant que le soufre du dépôt peut être d’origine magmatique. Cette hypothèse est en accord avec l’observation systématique, dans les parties supérieures du granite (sondage et niveaux supérieurs de la mine), de structures caractéristiques de transition magmatique-hydrothermale comme des systèmes aplo-pegmatitiques, des veines de quartz à bordure de K-feldspath, des concentrations de quartz de type stockscheider et des textures de solidification unilatérales (UST). Les résultats de géochronologie confirment cette hypothèse avec des âges U-Pb sur zircon (611.9±4.7 et 611.9±5.6 Ma pour le granite à grain moyen (GEM) et le microgranite (GEF) et 40Ar-39Ar sur muscovite (veines à bordure de K-feldspath : 612.9±2 à 608.8±2 Ma ; veines minéralisées : 611.7±2 à 608.8±2 Ma ; veines de quartz précoces : 608.4±2 Ma) très proches. Ces âges obtenus indiquent que la mise-en-place du granite, l’exsolution du fluide magmatique-hydrothermal et la formation des veines de quartz aurifères ont été réalisées pendant un écart de temps de 5 Ma, entre 613 et 608 Ma. La minéralisation (611 à 608 Ma) contemporaine de la cristallisation du granite (612 à 610 Ma), l’association de l’or avec des minéraux de bismuth (aikinite), la démonstration du contrôle structural sur la formation des veines et les évidences de transition magmatique-hydrothermale en domaine de coupole granitique montrent que le dépôt d’or du Granite Passa Três partage plusieurs similitudes avec les dépôts du type intrusion-related. / The Passa Três Granite is situated in southern Brazil (Paraná State) and presents a NNE-SSW elongated shape. This intrusion is emplaced within metapelites of the Mesoproterozoic Açungui Group (Ribeira Belt, Mantiqueira Province), between the N40E trending Morro Agudo and Lancinha faults. Gold mineralisation is composed of centimetric to metric quartz veins with fluorite, sulphides and carbonates. The main objectives of this work are i) to understand the model of formation of the mineralised veins systems taking into account the relationships between magmatism, hydrothermalism, deformation and mineralogy in space and time; ii) the characterization of the nature, source and emplacement conditions of the ore fluids; and iii) the characterization of a metallogenic model for this singular deposit. In order to reach these purposes, the methods to be applied include, beyond the structural geology and field works: petrography, U-Pb zircon (LA-ICP-MS) and 40Ar-39Ar muscovite geochronology, scanning electron microscopy (SEM), electron-microprobe analyses (EPMA), X-ray fluorescence (XRF), isotopic analysis of sulphur (δ34S), and microthermometric and Raman analysis of fluid inclusions. Structural data showed the coexistence of two major normal mineralised vein systems, one N-S and the other one E-W, with dips of 60-75ºW and 45-70ºS, respectively. Both systems are interpreted to be contemporaneous and conjugated. Orebodies form sigmoidal geometries that resulted of the opening of pull-aparts as a consequence of the normal movements along low-angle fault planes. High-angle dip of the global mineralised structures is explained by the succession of the pull-aparts. Four mineralogical stages resulted in the formation of the mineralised system: phase 1 [quartz 1 + fluorite], phase 2a [quartz 2 + pyrite 2a ± gold ± chalcopyrite ± aikinite ± fluorite ± sphalerite ± muscovite], phase 2b [quartz 2 + pyrite 2b + gold + chalcopyrite + aikinite + ankerite ± sphalerite ± fluorite ± muscovite] and phase 3 [quartz 3 + ankerite + calcite + molybdenite ± aikinite ± muscovite ± fluorite]. Gold occurs as invisible gold and as native grains within fractures that affect pyrite 2a and 2b, commonly associated with chalcopyrite and aikinite. Alteration related to the mineralisation includes muscovite/quartz/pyrite (greisen type alteration) and sericite/carbonato/clinochlore (phyllic alteration) assemblages. The δ34S values of pyrite crystals (from -0.1‰ to 1.1‰) indicate that the sulphur in this deposit may have a magmatic origin. This hypothesis agrees with the systematic observation, within the upper part of the granite (drill holes and superior levels of the mine), of structures typical of magmatic-hydrothermal transition such as aplite-pegmatite systems, quartz veins with K-feldspar border, quartz concentration of stockscheider type and unilateral solidification textures (UST). Geochronological data confirm this hypothesis with U-Pb zircon ages (611.9±4.7 and 611.9±5.6 Ma for medium grained granite facies (GEM) and microgranite (GEF), respectively) and 40Ar-39Ar muscovite dating (veins with K-feldspar border: 612.9±2 to 608.8±2 Ma; mineralised veins: 611.7±2 to 608.8±2 Ma; barren vein: 608.4±2 Ma), that are very close. These ages indicate that the granite emplacement, the magmatic-hydrothermal fluid release and the formation of gold-bearing quartz veins occur during a time lapse of approximately 5 Ma, between 613 and 608 Ma. The mineralisation (611 to 608 Ma) coeval to granite crystallization (612 to 610 Ma), the association of gold with Bi minerals (aikinite), the strong structural control for veins and magmatic-hydrothermal transition features at the roof of a small granitic intrusion suggest that the Passa Três gold deposit shares several similarities with intrusion-related gold deposits.
3

Hydrodynamique des systèmes minéralisés péri-granitiques : étude du gisement à W-Sn-(Cu) de Panasqueira (Portugal) / Hydrodynamics of peri-granitic mineralized systems : study of the W-Sn-(Cu) Panasqueira ore deposit

Launay, Gaëtan 19 December 2018 (has links)
Les gisements à Sn-W de type veine et greisen sont des systèmes magmatiques-hydrothermaux dont l’exploitation fournit une part importante de la production mondiale de tungstène et qui représentent également une source importante d’étain. La formation de ces gisements résulte d’un continuum de processus magmatiques et hydrothermaux et implique un transport efficace et la focalisation des fluides minéralisateurs. Cette étude vise àaméliorer la compréhension des processus hydrodynamiques et géologiques impliqués lors du transport et du dépôt de métaux conduisant à la formation de ces gisements. Nous avons réalisé une étude pluridisciplinaire combinant (i) travail de terrain (étude géologique et structurale), (ii) reconstruction des paléo-circulations hydrothermales via l’analyse texturale des bandes de croissance des tourmalines, (iii) détermination expérimentale des changements de perméabilité induits par la greisenisation et (iv) modélisation numérique des écoulements péri-granitiques prenant en compte l’évolution de la perméabilité dynamique lors des interactions fluide-roche. Cette méthodologie a été appliquée au cas du gisement W-Sn-(Cu) de Panasqueira, qui constitue un site de référence pour étudier les processus magmatiques e thydrothermaux conduisant à la formation de gisements à Sn-W de classe mondiale. Les résultats obtenus démontrent que l’expulsion des fluides magmatiques minéralisés a déclenché la greisenisation des parties apicales (coupoles etapex) de l’intrusion granitique, entraînant la création de porosité (~ 8,5%) qui améliore significativement la perméabilité(de 10-20 à 10-17 m²) au sein du greisen massif composant le toit de l’intrusion. Le développement de ce niveau perméable constitue un drain important favorisant l'expulsion et la focalisation des fluides magmatiques minéralisateurs exsolvés lors de la cristallisation du granite sous-jacent. Cette focalisation des décharges hydrothermales (i) améliore significativement le transport des métaux, et (ii) favorise l'établissement de conditions de pression de fluide élevées qui couplées aux contraintes régionales compressives causent l'ouverture des veines minéralisées au toit de l’intrusion.Cette étude souligne l’importance des rétrocontrôles entre perméabilité dynamique et altération hydrothermale. Ces derniers constituent des mécanismes majeurs permettant d’améliorer significativement la circulation des fluides minéralisateurs et donc la formation de gisements hydrothermaux de grandes tailles / The vein and greisen Sn-W deposits are magmatic-hydrothermal systems that provide an important part of theworld W production and represent an important source of Sn. The formation of these deposits involves continuum ofmagmatic-hydrothermal processes and implies the transfer and the focusing of a large amount of mineralizing fluids. Thisstudy aims to improve understanding of hydrodynamic and geological processes involved during the transport and thedeposition of metals leading to the formation of these deposits. We have performed a complete study combining (i) fieldworks (geological and structural studies), (ii) fluid flow reconstruction via the textural analysis of tourmaline growth bands,(iii) experimental determination of permeability changes during greisenization, and (iv) numerical modeling of peri-graniticfluid flow accounting for magmatic fluid production and dynamic permeability related to fluid-rock interactions. Thismethodology was applied in the case of the world-class W-Sn-(Cu) Panasqueira deposit, which represents a referencesite to study magmatic-hydrothermal processes leading to the formation of large vein and greisen deposit. Our resultsdemonstrate that the releasing and the expulsion of ore-bearing magmatic fluids triggered greisenization of the apicalpart of granite intrusion, which caused generation of porosity (~8.5%) and therefore a significant increase of permeability(from 10-20 to 10-17 m²) in massive greisen composing the granite’s roof. The development of this permeable pathwayconstitutes an important drain promoting the expulsion and the focusing of magmatic fluids produced during thecrystallization of the underlying granite. This enhancement of magmatic fluids expulsion (i) promotes significantly fluidflux and transfer of metals, and (ii) the establishment of high fluid pressure conditions, which coupled with the regionalcompressive crustal regime, triggered the opening of mineralized veins above the granite roof. Finally, this studyemphasizes that reactive hydrothermal fluids are able to generate their own pathways in initially impermeable rocks. Thisprocess represents an important mechanism to enhance fluid flow and promote the formation of large hydrothermaldeposits.

Page generated in 0.1145 seconds