• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 4
  • Tagged with
  • 35
  • 35
  • 18
  • 17
  • 8
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Evaluation of the Geothermal Potential of the Snake River Plain, Idaho, Based on Three Exploration Holes

Freeman, Thomas G. 01 May 2013 (has links)
The work in this thesis was based on analyzing water samples collected from three exploratory boreholes drilled during Project Hotspot. The water samples were analyzed for their chemical properties. The chemical properties of the water samples were used as a basis for further analysis.Geophysical logs, mainly temperature logs, were also analyzed for this project. Temperature logs measure temperature in relation to depth within a borehole.All the analyses were made in order to estimate the geothermal potential of the project areas. The exploratory boreholes were all drilled in different areas and each had unique characteristics. The Mountain Home borehole provided the most promising evidence for future geothermal potential. Geothermal energy is a form of renewable energy and potential production areas are difficult and expensive to locate.
12

Geothermal Alteration of Basaltic Core from the Snake River Plain, Idaho

Sant, Christopher Joseph 01 May 2012 (has links)
The Snake River Plain is located in the southern part of the state of Idaho. The eastern plain, on which this study focuses, is a trail of volcanics from the Yellowstone hotspot. Three exploratory geothermal wells were drilled on the Snake River Plain. This project analyzes basaltic core from the first well at Kimama, north of Burley, Idaho. The objectives of this project are to establish zones of geothermal alteration and analyze the potential for geothermal power production using sub-aquifer resources on the axial volcanic zone of the Snake River Plain. Thirty samples from 1,912 m of core were sampled and analyzed for clay content and composition using X-ray diffraction. Observations from core samples and geophysical logs are also used to establish alteration zones. Mineralogical data, geophysical log data and physical characteristics of the core suggest that the base of the Snake River Plain aquifer at the axial zone is located 960m below the surface, much deeper than previously suspected. Swelling smectite clay clogs pore spaces and reduces porosity and permeability to create a natural base to the aquifer. Increased temperatures favor the formation of smectite clay and other secondary minerals to the bottom of the hole. Below 960 m the core shows signs of alteration including color change, formation of clay, and filling of other secondary minerals in vesicles and fractured zones of the core. The smectite clay observed is Fe-rich clay that is authigenic in some places. Geothermal power generation may be feasible using a low temperature hot water geothermal system if thermal fluids can be attained near the bottom of the Kimama well. (113 pages)
13

The Baker Cave Bison Remains: Bison Diminution and Late Holocene Subsistence on the Snake River Plain, Southern Idaho

Breslawski, Ryan P 01 May 2014 (has links)
The role of bison in the prehistoric subsistence in southern Idaho is not fully understood. Bison remains from Baker Cave, a late Holocene archaeological site dating to cal A.D. 1042-1265, however, provide evidence of pre-contact subsistence strategies in the region. This thesis focuses on the paleoecology of bison and their role in prehistoric subsistence on the Snake River Plain (SRP). The ecological study of bison focuses on the hypothesized trans-Holocene diminution in bison body size in southern Idaho, while a second study focuses on how these animals figured into prehistoric responses to seasonal fat scarcity. Although bison diminution and its ecological determinants are well understood on the Great Plains, the history of diminution west of the Rocky Mountains is less clear. Bison morphometrics from Baker Cave present the opportunity to assess bison diminution on the Snake River Plain. Bison morphometrics from Baker Cave are indistinguishable not only from other late Holocene bison on the Snake River Plain but iv also from late Holocene bison from the Great Plains. Further, the Baker Cave bison are smaller than early Holocene bison from the Great Plains and Snake River Plain. These results suggest morphological similarity between Snake River Plain bison and Great Plains bison through the Holocene, pointing to similar bottom up ecological constraints on body size. Although bison are common components of SRP archaeofaunas, their role in prehistoric subsistence is poorly understood. To shed light on this problem, I hypothesize that the Baker Cave bison assemblage resulted from hunters seeking skeletal fat. I test predictions drawn from this hypothesis with assemblage-level patterns in element representation, impact scar distribution, and fragmentation. These assemblage-level patterns track the skeletal fat utility of elements. These patterns, combined with winter procurement evidenced by fetal remains, support the hypothesis that fat-seeking behavior was a response to winter fat scarcity. A comparison with smaller bison assemblages from southern Idaho suggests that this fat-seeking behavior might have persisted as far back as the middle Holocene, although this requires confirmation from future studies.
14

Irrigator Responses to Changes in Water Availability in Idaho's Snake River Plain

Chance, Eric Wilson 18 July 2017 (has links)
Understanding irrigator responses to previous changes in water availability is critical to building effective institutions that allow for efficient and resilient management of water resources in the face of potentially increasing scarcity due to climate change. Using remote sensing data, I examined irrigator responses to seasonal changes in water availability in Idaho's Snake River Plain over the past 33 years. Google Earth Engine's high performance cloud computing and big data processing capabilities were used to compare the performance of three spectral indices, three compositing algorithms and two sensors for 2002 and 2007 for distinguishing between irrigated and non-irrigated parcels. We demonstrate that, on average, the seasonal-maximum algorithm yields a 60% reduction in county scale root mean square error (RMSE) over the accepted single-date approach. We use the best performing classification method, a binary threshold of the seasonal maximum of the Normalized Difference Moisture Index (NDMI), to identify irrigated and non-irrigated lands in Idaho's Snake River Basin for 1984-2016 using Landsat 5-8 data. NDMI of irrigated lands was found to generally increase over time, likely as a result of changes in agricultural practices increasing crop productivity. Furthermore, we find that irrigators with rights to small areas, and those with only surface water rights are more likely to have a major reduction (>25%) in irrigated area and conversely those with a large, groundwater rights are more likely to have major increases (>25%) in the extent of their irrigation. / Master of Science / Understanding irrigator responses to previous changes in water availability is critical to building effective institutions that allow for efficient and resilient management of water resources in the face of potentially increasing scarcity due to climate change. Using remote sensing data, I examined irrigator responses to seasonal changes in water availability in Idaho’s Snake River Plain over the past 33 years. Google Earth Engine’s high performance cloud computing and big data processing capabilities were used to compare the performance of three spectral indices, three compositing algorithms and two sensors for 2002 and 2007 for distinguishing between irrigated and non-irrigated parcels. We demonstrate that, on average, the seasonal-maximum algorithm yields a 60% reduction in county scale root mean square error (RMSE) over the accepted single-date approach. We use the best performing classification method, a binary threshold of the seasonal maximum of the Normalized Difference Moisture Index (NDMI), to identify irrigated and non-irrigated lands in Idaho’s Snake River Basin for 1984-2016 using Landsat 5-8 data. NDMI of irrigated lands was found to generally increase over time, likely as a result of changes in agricultural practices increasing crop productivity. Furthermore, we find that irrigators with rights to small areas, and those with only surface water rights are more likely to have a major reduction (>25%) in irrigated area and conversely those with a large, groundwater rights are more likely to have major increases (>25%) in the extent of their irrigation.
15

Snake River : a personal search

Slinker, Eva Havas 01 January 1990 (has links)
This thesis includes twenty landscape paintings, primarily oil on canvas, inspired by a trip to the Hell's Canyon Country of the Snake River. The search for a personal idiom necessitated introspection, and the visual interpretation of the recalled experience required that formal issues of painting be synthesized to communicate the essential response to the landscape. The images progress from the depiction of deep space to compositions of the component parts of the landscape: trees, water, and rock.
16

An Analysis of Stock Densities and Harvest of the Cutthroat Trout of the Snake River, Teton County, Wyoming

Kiefling, John W. 01 May 1972 (has links)
An intensive creel census and marking program was conducted in 1969 and 1970 to make possible population estimates and estimates of harvest of cutthroat trout in the Snake River in Teton County, Wyoming. Stock density determinations made in one of the five study areas provided an estimate of 400 and 992 cutthroat trout, eight inches or more in length, per mile of stream in 1969 and 1970 respectively. Harvest data provide an estimate of 5,207 and 5,903 cutthroat trout harvested in 1969 and 1970 respectively. The harvest estimates obtained in this study are not comparable to those made in 1967 and 1968 due to a difference in the methods used in obtaining these data. The catches of cutthroat trout per hour in 1969 and 1970 were calculated to be 0.31 and 0.30 respectively, These relatively low success rates are coincident with the fluctuating volume flows of the Snake River. Average lengths, condition factors, and catch per unit effort do not indicate significant changes in the fishery from past years.
17

The archaeology and mobility at 10-CN-05, an archaeological site, Middle Snake River, Idaho /

Jacobs, Tedd D. January 2009 (has links)
Thesis (M.A.)--Boise State University, 2009. / Includes abstract. Includes bibliographical references (leaves 57-60).
18

The archaeology and mobility at 10-CN-05, an archaeological site, Middle Snake River, Idaho

Jacobs, Tedd D. January 2009 (has links)
Thesis (M.A.)--Boise State University, 2009. / Title from t.p. of PDF file (viewed Apr. 22, 2010). Includes abstract. Includes bibliographical references (leaves 57-60).
19

McKenzie, McDonald, and Ross in Snake River country ...

Barrett, Lynn Murray. January 1900 (has links)
Thesis (M.A.)--University of California, Dec. 1924. / Typewritten (carbon copy). Bibliography: p. 353-405.
20

Lava Flow Hazard Assessment for the Idaho National Laboratory, Idaho Falls, and Pocatello, Idaho, U.S.A.

Gallant, Elisabeth 24 October 2016 (has links)
This study presents a probabilistic lava flow hazard assessment for the Idaho National Laboratory (INL) and the cities of Idaho Falls and Pocatello, Idaho. The impetus of this work is to estimate the conditional probability that a lava flow on the eastern Snake River Plain (ESRP) will impact the areas of interest given the formation of a new volcanic vent in the region. A list of 288 eruptive events, derived from a previously published inventory of 506 surface and 32 buried vents, was created to reduce the biasing of spatial density maps towards eruptions with multiple dependent vents. Conditional probabilities of new vents and events occurring on the ESRP were modeled using the the Sum of Asymptotic Mean Squared Error (SAMSE) optimal pilot bandwidth estimator with a bivariate Gaussian kernel function. Monte Carlo analyses of potential eruption scenarios were performed using MOLASSES, a cellular automata fluid flow simulator. Results show that Idaho Falls is impacted <1% of the time for both the vent and event simulations; Pocatello is not impacted by any simulated flows. 25.45% of vent flows and 33.74% of event flows breach the boundaries of INL. 18.27%of vent and 25.85% of event simulations initiate on the INL property. Annual inundation probabilities of 1.06 x 10-4 for vent-based flows and 7.12 x 10-5 for event-based flows are reported for INL; annual probabilities of an eruptive center initiating on INL property are 7.60 x 10-5 for vents and 5.45 x 10-5 for events. All of these values exceed the International Atomic Energy Agency’s acceptable risk probability of 10-7 by several orders of magnitude.

Page generated in 0.0462 seconds