Spelling suggestions: "subject:"sobol'"" "subject:"cobol'""
11 |
Modélisation hydraulique à surface libre haute-résolution : utilisation de données topographiques haute-résolution pour la caractérisation du risque inondation en milieux urbains et industriels / High-resolution modelling with bi-dimensional shallow water equations based codes : high-resolution topographic data use for flood hazard assessment over urban and industrial environmentsAbily, Morgan 11 December 2015 (has links)
Pour l'évaluation du risque inondation, l’emploi de modèles numériques 2D d’hydraulique à surface libre reposant sur la résolution des équations de Saint-Venant est courant. Ces modèles nécessitent entre autre la description de la topographie de la zone d’étude. Sur des secteurs urbains denses ou des sites industriels, cette topographie complexe peut être appréhendée de plus en plus finement via des technologies dédiées telles que le LiDAR et la photogrammétrie. Les Modèles Numériques d'Elévation Haute Résolution (HR MNE) générés à partir de ces technologies, deviennent employés dans les études d’évaluation du risque inondation. Cette thèse étudie les possibilités, les avantages et les limites, liées à l'intégration des données topographiques HR en modélisation 2D du risque inondation en milieux urbains et industriels. Des modélisations HR de scénarios d'inondation d'origines pluviale ou fluviale sont testés en utilisant des HR MNE crées à partir de données LiDAR et photo-interprétées. Des codes de calculs (Mike 21, Mike 21 FM, TELEMAC-2D, FullSWOF_2D) offrant des moyens différent d'intégration de la donnée HR et basés sur des méthodes numériques variées sont utilisés. La valeur ajoutée de l'intégration des éléments fins du sur-sol impactant les écoulements est démontrée. Des outils pour appréhender les incertitudes liées à l'emploi de ces données HR sont développés et une analyse globale de sensibilité est effectuée. Les cartes d'indices de sensibilité (Sobol) produites soulignent et quantifient l'importance des choix du modélisateur dans la variance des résultats des modèles d'inondation HR ainsi que la variabilité spatiale de l'impact des paramètres incertains testés. / High Resolution (infra-metric) topographic data, including LiDAR photo-interpreted datasets, are becoming commonly available at large range of spatial extent, such as municipality or industrial site scale. These datasets are promising for High-Resolution (HR) Digital Elevation Model (DEM) generation, allowing inclusion of fine aboveground structures that influence overland flow hydrodynamic in urban environment. DEMs are one key input data in Hydroinformatics to perform free surface hydraulic modelling using standard 2D Shallow Water Equations (SWEs) based numerical codes. Nonetheless, several categories of technical and numerical challenges arise from this type of data use with standard 2D SWEs numerical codes. Objective of this thesis is to tackle possibilities, advantages and limits of High-Resolution (HR) topographic data use within standard categories of 2D hydraulic numerical modelling tools for flood hazard assessment purpose. Concepts of HR topographic data and 2D SWE based numerical modelling are recalled. HR modelling is performed for : (i) intense runoff and (ii) river flood event using LiDAR and photo-interpreted datasets. Tests to encompass HR surface elevation data in standard modelling tools ranges from industrial site scale to a megacity district scale (Nice, France). Several standard 2D SWEs based codes are tested (Mike 21, Mike 21 FM, TELEMAC-2D, FullSWOF_2D). Tools and methods for assessing uncertainties aspects with 2D SWE based models are developed to perform a spatial Global Sensitivity Analysis related to HR topographic data use. Results show the importance of modeller choices regarding ways to integrate the HR topographic information in models.
|
12 |
Algorithms and architectures for self-calibration of enginesMohd Azmin, Farraen January 2016 (has links)
Engine Management Systems (EMS) is getting more complicated each year with new functions being introduced due to tighter emission regulations of both air quality and CO2. This directly a ects the calibration process of a powertrain because the number of vehicle parameters has increased about 10 times in the last 10 years. Self-calibrating feature such as proposed in this thesis has the potential to increase the e ciency of calibrating a complex EMS. The feature is intended to adapt itself to the engine behaviour and performance by continuously updating its calibration maps as the engine is being operated. This process will reduce the needs for new calibration data and additional ne-tuning when an EMS is being carried over to a di erent vehicle. The self-calibrating feature automatically adjusts the air path calibration maps of an engine. It adjusts the air path setpoint maps in real-time for steady state operating conditions.
|
13 |
Assessing Machine Learning Models to Optimize Turbidity Removal in Water TreatmentSprague, Caleb A. 14 May 2022 (has links)
No description available.
|
14 |
Bayesian Additive Regression Trees: Sensitivity Analysis and Multiobjective OptimizationHoriguchi, Akira January 2020 (has links)
No description available.
|
15 |
Structural Applications of Metal Foams Considering Material and Geometrical UncertaintyMoradi, Mohammadreza 01 September 2011 (has links)
Metal foam is a relatively new and potentially revolutionary material that allows for components to be replaced with elements capable of large energy dissipation, or components to be stiffened with elements which will generate significant supplementary energy dissipation when buckling occurs. Metal foams provide a means to explore reconfiguring steel structures to mitigate cross-section buckling in many cases and dramatically increase energy dissipation in all cases. The microstructure of metal foams consists of solid and void phases. These voids have random shape and size. Therefore, randomness ,which is introduced into metal foams during the manufacturing processes, creating more uncertainty in the behavior of metal foams compared to solid steel. Therefore, studying uncertainty in the performance metrics of structures which have metal foams is more crucial than for conventional structures. Therefore, in this study, structural application of metal foams considering material and geometrical uncertainty is presented. This study applies the Sobol' decomposition of a function of many random variables to different problem in structural mechanics. First, the Sobol' decomposition itself is reviewed and extended to cover the case in which the input random variables have Gaussian distribution. Then two examples are given for a polynomial function of 3 random variables and the collapse load of a two story frame. In the structural example, the Sobol' decomposition is used to decompose the variance of the response, the collapse load, into contributions from the individual input variables. This decomposition reveals the relative importance of the individual member yield stresses in determining the collapse load of the frame. In applying the Sobol' decomposition to this structural problem the following issues are addressed: calculation of the components of the Sobol' decomposition by Monte Carlo simulation; the effect of input distribution on the Sobol' decomposition; convergence of estimates of the Sobol' decomposition with sample size using various sampling schemes; the possibility of model reduction guided by the results of the Sobol' decomposition. For the rest of the study the different structural applications of metal foam is investigated. In the first application, it is shown that metal foams have the potential to serve as hysteric dampers in the braces of braced building frames. Using metal foams in the structural braces decreases different dynamic responses such as roof drift, base shear and maximum moment in the columns. Optimum metal foam strengths are different for different earthquakes. In order to use metal foam in the structural braces, metal foams need to have stable cyclic response which might be achievable for metal foams with high relative density. The second application is to improve strength and ductility of a steel tube by filling it with steel foam. Steel tube beams and columns are able to provide significant strength for structures. They have an efficient shape with large second moment of inertia which leads to light elements with high bending strength. Steel foams with high strength to weight ratio are used to fill the steel tube to improves its mechanical behavior. The linear eigenvalue and plastic collapse finite element (FE) analysis are performed on steel foam filled tube under pure compression and three point bending simulation. It is shown that foam improves the maximum strength and the ability of energy absorption of the steel tubes significantly. Different configurations with different volume of steel foam and composite behavior are investigated. It is demonstrated that there are some optimum configurations with more efficient behavior. If composite action between steel foam and steel increases, the strength of the element will improve due to the change of the failure mode from local buckling to yielding. Moreover, the Sobol' decomposition is used to investigate uncertainty in the strength and ductility of the composite tube, including the sensitivity of the strength to input parameters such as the foam density, tube wall thickness, steel properties etc. Monte Carlo simulation is performed on aluminum foam filled tubes under three point bending conditions. The simulation method is nonlinear finite element analysis. Results show that the steel foam properties have a greater effect on ductility of the steel foam filled tube than its strength. Moreover, flexural strength is more sensitive to steel properties than to aluminum foam properties. Finally, the properties of hypothetical structural steel foam C-channels foamed are investigated via simulations. In thin-walled structural members, stability of the walls is the primary driver of structural limit states. Moreover, having a light weight is one of the main advantages of the thin-walled structural members. Therefore, thin-walled structural members made of steel foam exhibit improved strength while maintaining their low weight. Linear eigenvalue, finite strip method (FSM) and plastic collapse FE analysis is used to evaluate the strength and ductility of steel foam C-channels under uniform compression and bending. It is found that replacing steel walls of the C-channel with steel foam walls increases the local buckling resistance and decreases the global buckling resistance of the C-channel. By using the Sobol' decomposition, an optimum configuration for the variable density steel foam C-channel can be found. For high relative density, replacing solid steel of the lips and flange elements with steel foam increases the buckling strength. On the other hand, for low relative density replacing solid steel of the lips and flange elements with steel foam deceases the buckling strength. Moreover, it is shown that buckling strength of the steel foam C-channel is sensitive to the second order Sobol' indices. In summary, it is shown in this research that the metal foams have a great potential to improve different types of structural responses, and there are many promising application for metal foam in civil structures.
|
16 |
Quantification et méthodes statistiques pour le risque de modèle / Quantification and statistical methods for model riskNiang, Ibrahima 26 January 2016 (has links)
En finance, le risque de modèle est le risque de pertes financières résultant de l'utilisation de modèles. Il s'agit d'un risque complexe à appréhender qui recouvre plusieurs situations très différentes, et tout particulièrement le risque d'estimation (on utilise en général dans un modèle un paramètre estimé) et le risque d'erreur de spécification de modèle (qui consiste à utiliser un modèle inadéquat). Cette thèse s'intéresse d'une part à la quantification du risque de modèle dans la construction de courbes de taux ou de crédit et d'autre part à l'étude de la compatibilité des indices de Sobol avec la théorie des ordres stochastiques. Elle est divisée en trois chapitres. Le Chapitre 1 s'intéresse à l'étude du risque de modèle dans la construction de courbes de taux ou de crédit. Nous analysons en particulier l'incertitude associée à la construction de courbes de taux ou de crédit. Dans ce contexte, nous avons obtenus des bornes de non-arbitrage associées à des courbes de taux ou de défaut implicite parfaitement compatibles avec les cotations des produits de référence associés. Dans le Chapitre 2 de la thèse, nous faisons le lien entre l'analyse de sensibilité globale et la théorie des ordres stochastiques. Nous analysons en particulier comment les indices de Sobol se transforment suite à une augmentation de l'incertitude d'un paramètre au sens de l'ordre stochastique dispersif ou excess wealth. Le Chapitre 3 de la thèse s'intéresse à l'indice de contraste quantile. Nous faisons d'une part le lien entre cet indice et la mesure de risque CTE puis nous analysons, d'autre part, dans quelles mesures une augmentation de l'incertitude d'un paramètre au sens de l'ordre stochastique dispersif ou excess wealth entraine une augmentation de l'indice de contraste quantile. Nous proposons enfin une méthode d'estimation de cet indice. Nous montrons, sous des hypothèses adéquates, que l'estimateur que nous proposons est consistant et asymptotiquement normal / In finance, model risk is the risk of loss resulting from using models. It is a complex risk which recover many different situations, and especially estimation risk and risk of model misspecification. This thesis focuses: on model risk inherent in yield and credit curve construction methods and the analysis of the consistency of Sobol indices with respect to stochastic ordering of model parameters. it is divided into three chapters. Chapter 1 focuses on model risk embedded in yield and credit curve construction methods. We analyse in particular the uncertainty associated to the construction of yield curves or credit curves. In this context, we derive arbitrage-free bounds for discount factor and survival probability at the most liquid maturities. In Chapter 2 of this thesis, we quantify the impact of parameter risk through global sensitivity analysis and stochastic orders theory. We analyse in particular how Sobol indices are transformed further to an increase of parameter uncertainty with respect to the dispersive or excess wealth orders. Chapter 3 of the thesis focuses on contrast quantile index. We link this latter with the risk measure CTE and then we analyse on the other side, in which circumstances an increase of a parameter uncertainty in the sense of dispersive or excess wealth orders implies and increase of contrast quantile index. We propose finally an estimation procedure for this index. We prove under some conditions that our estimator is consistent and asymptotically normal
|
17 |
A Sensitivity Analysis of a Heuristic Model used for the Placement Allocation of Utilities in Transportation Right-of-Way CorridorsChristian, Steve Clarence 08 November 2004 (has links)
The requirements for public utility systems in the United States of America have grown enormously over the years triggering a tremendous shortage for space available to public utilities on and within transportation right-of-ways (ROW). Overcrowding and improper location of utilities has resulted in problems such as, damage to infrastructure, traffic accidents and, interruption of service to customers. The project titled, "Optimal Placement of Utilities within FDOT Right-of-Way", sponsored by the Florida Department of Transportation (FDOT), and currently being investigated at the University of South Florida, presents a decision-making heuristic aimed at developing a better utility placement allocation system (Kranc et. al) [6]. Working in accordance with the guidelines of safety, relocation, and clearance for utility placement set by the American Association of State Highway and Transportation Officials organization (AASHTO), the heuristic finds suitable locations for the utilities in ROW corridors. However, a model being used to advocate a practice having large social and economical impacts is more likely to play the role of generic evidence in a trial, whose weight must ultimately be established by a 'jury'. The question being addressed to the system must be scrutinized carefully, and the formal structure updated iteratively until it proves capable of providing an answer to the given question. A good sensitivity analysis can provide this generic quality assurance to the model and help demonstrate the worthiness of the model itself.
This thesis is a quantitative and qualitative sensitivity analysis of the abovementioned heuristic. The analysis is conducted in two parts,
1. The 'Model Factor Sensitivity Analysis', with the objective of assessing the uncertainties associated with the modeling of the heuristic. This analysis focuses primarily on providing an evaluation of the confidence in the heuristic and its predictions by analyzing the influences that variations in the input factors have on the outputs of the utility cost assessment models and the final output of the heuristic itself. Variance based sensitivity indices derived from Sobol' sensitivity indices [42] are used here for this purpose.
2. The 'Model Output Evaluation and Enhancement' study, which initially focuses on understanding / evaluating the complexities of the discrete step, cost optimization procedure used in the heuristic and later, based on certain observed shortcomings and problems develops an enhancement, the Ideal Configuration Selector (ICS) to be implemented with the heuristic. The ICS addresses all the problems of the heuristic with the help of experimental speedup, positional sensitivity and refinement tools and employs a multi criterion evaluation technique for utility configuration assessment to provide substantiation to the outputs determined by the heuristic.
|
18 |
Statistical Methods for Functional Genomics Studies Using Observational DataLu, Rong 15 December 2016 (has links)
No description available.
|
19 |
Approche géomatique de la variabilité spatio-temporelle de la contamination microbienne des eaux récréativesNzang Essono, Francine January 2016 (has links)
L’objectif général de cette thèse est de caractériser la dynamique des transferts des bactéries fécales à l’aide d’une modélisation spatio-temporelle, à l’échelle du bassin versant (BV) dans une région agricole et à l’échelle événementielle. Ce projet vise à mieux comprendre l'influence des processus hydrologiques, les facteurs environnementaux et temporels impliqués dans l’explication des épisodes de contamination microbienne des eaux récréatives.
Premièrement, un modèle bayésien hiérarchique a été développé pour quantifier et cartographier les niveaux de probabilité des eaux à être contaminées par des effluents agricoles, sur la base des données spectrales et des variables géomorphologiques. Par cette méthode, nous avons pu calculer les relations pondérées entre les concentrations d’Escherichia coli et la distribution de l’ensemble des paramètres agro-pédo-climatiques qui régissent sa propagation. Les résultats ont montré que le modèle bayésien développé peut être utilisé en mode prédictif de la contamination microbienne des eaux récréatives. Ce modèle avec un taux de succès de 71 % a mis en évidence le rôle significatif joué par la pluie qui est la cause principale du transport des polluants.
Deuxièmement, le modèle bayésien a fait l’objet d'une analyse de sensibilité liée aux paramètres spatiaux, en utilisant les indices de Sobol. Cette démarche a permis (i) la quantification des incertitudes sur les variables pédologiques, d’occupation du sol et de la distance et (2) la propagation de ces incertitudes dans le modèle probabiliste c'est-à-dire le calcul de l’erreur induite dans la sortie par les incertitudes des entrées spatiales. Enfin, une analyse de sensibilité des simulations aux différentes sources d’incertitude a été effectuée pour évaluer la contribution de chaque facteur sur l’incertitude globale en prenant en compte leurs interactions. Il apparaît que sur l’ensemble des scénarios, l’incertitude de la contamination microbienne dépend directement de la variabilité des sols argileux. Les indices de premier ordre de l’analyse de Sobol ont montré que parmi les facteurs les plus susceptibles d’influer la contamination microbienne, la superficie des zones agricoles est le premier facteur important dans l'évaluation du taux de coliformes. C’est donc sur ce paramètre que l’attention devra se porter dans le contexte de prévision d'une contamination microbienne. Ensuite, la deuxième variable la plus importante est la zone urbaine avec des parts de sensibilité d’environ 30 %. Par ailleurs, les estimations des indices totaux sont meilleures que celles des indices de premier ordre, ce qui signifie que l’impact des interactions paramétriques est nettement significatif pour la modélisation de la contamination microbienne
Enfin, troisièmement, nous proposons de mettre en œuvre une modélisation de la variabilité temporelle de la contamination microbiologique du bassin versant du lac Massawippi, à partir du modèle AVSWAT. Il s'agit d'une modélisation couplant les composantes temporelles et spatiales qui caractérisent la dynamique des coliformes. La synthèse des principaux résultats démontrent que les concentrations de coliformes dans différents sous-bassins versants se révèlent influencées par l’intensité de pluie. La recherche a également permis de conclure que les meilleures performances en calage sont obtenues au niveau de l'optimisation multi-objective. Les résultats de ces travaux ouvrent des perspectives encourageantes sur le plan opérationnel en fournissant une compréhension globale de la dynamique de la contamination microbienne des eaux de surface. / Abstract : The aim of this study was to predict water faecal contamination from a bayesian probabilistic model, on a watershed scale in a farming area and on a factual scale. This project aims to better understand the influence of hydrological, environmental and temporal factors involved in the explanation of microbial contamination episodes of recreational waters. First, a bayesian probabilistic model: Weight of Evidence was developed to identify and map the probability of water levels to be contaminated by agricultural effluents, on the basis of spectrals data and geomorphologic variables. By this method, we were able to calculate weighted relationships between concentrations of Escherichia coli and distribution of key agronomic, pedologic and climatic parameters that influence the spread of these microorganisms. The results showed that the Bayesian model that was developed can be used as a prediction of microbial contamination of recreational waters. This model, with a success rate of 71%, highlighted the significant role played by the rain, which is the main cause of pollution transport. Secondly, the Bayesian probabilistic model has been the subject of a sensitivity analysis related to spatial parameters, using Sobol indications. This allowed (1) quantification of uncertainties on soil variables, land use and distance and (2) the spread of these uncertainties in the probabilistic model that is to say, the calculation of induced error in the output by the uncertainties of spatial inputs. Lastly, simulation sensitivity analysis to the various sources of uncertainty was performed to assess the contribution of each factor on the overall uncertainty taking into account their interactions. It appears that of all the scenarios, the uncertainty of the microbial contamination is directly dependent on the variability of clay soils. Sobol prime indications analysis showed that among the most likely to influence the microbial factors, the area of farmland is the first important factor in assessing the coliforms. Importance must be given on this parameter in the context of preparation for microbial contamination. Then, the second most important variable is the urban area with sensitivity shares of approximately 30%. Furthermore, estimates of the total indications are better than those of the first order, which means that the impact of parametric interaction is clearly significant for the modeling of microbial contamination. Thirdly, we propose to implement a temporal variability model of microbiological contamination on the watershed of Lake Massawippi, based on the AVSWAT model. This is a model that couples the temporal and spatial components that characterize the dynamics of coliforms. The synthesis of the main results shows that concentrations of Escherichia coli in different sub-watersheds are influenced by rain intensity. Research also concluded that best performance is obtained by multi-objective optimization. The results of these studies show the prospective of operationally providing a comprehensive understanding of the dynamics of microbial contamination of surface water.
|
20 |
Modélisation, analyse et optimisation d’un largage de fusée spatiale depuis un porteur de type avion / Modeling, analysis, and optimization of the separation of a space rocket from a carrier aircraftSohier, Henri 28 November 2014 (has links)
Un système de lancement aéroporté est constitué d'un porteur de type avion larguant un lanceur à une certaine altitude. De tels systèmes sont l'objet d'un intérêt croissant, notamment pour la mise à poste de petits satellites. Les travaux présentés dans cette thèse s'intègrent dans le programme Perseus du CNES qui a déjà donné lieu à la construction d'un modèle réduit appelé EOLE. Il s'agit d'étudier la phase de largage, particulièrement sensible.Les contraintes de similitude pouvant permettre l'étude du largage taille réelle avec EOLE sont d'abord identifiées. Les possibilités d'extrapolation directe et déterministe des mesures réalisées avec EOLE étant limitées par le non respect d'une contrainte de masse, il est choisi d'étudier le largage avec une approche probabiliste en développant un nouveau modèle multi-corps. Une grande variété d'incertitudes est prise en compte, concernant par exemple aussi bien les interactions aérodynamiques que le mécanisme de séparation. Un nouveau critère de performance générique,basé sur des géométries élémentaires, est développé pour évaluer la fiabilité du largage.L'analyse de sensibilité du largage aux facteurs d'incertitude est ensuite réalisée. Compte tenu du nombre élevé de paramètres en jeu et du temps de simulation, il est d'abord recherché une simplification du modèle. La méthode de Morris est utilisée pour identifier des facteurs d'incertitude peu influents pouvant être fixés à une certaine valeur. Cette étape est fréquente, mais il est montré qu'il existe un risque important de fixer des facteurs dont l'influence a en fait été sous-estimée. Une adaptation de la méthode de Morris améliorant l'échantillonnage des facteurs, le calcul de leurs influences et le traitement statistique des résultats permet de réduire considérablement ce risque.Une fois l'impact des différentes incertitudes estimé, il a été possible d'optimiser les conditions de largage afin de réduire la probabilité qu'un problème intervienne. / In an air launch to orbit, a space rocket is launched from a carrier aircraft. Air launchto orbit appears as particularly interesting for small satellites. This Ph.D. thesis is part of the program Pegasus of the French space agency CNES and it follows the development of a small scale demonstrator called EOLE. It focuses on the very sensitive separation phase.The similitude constraints which have to be respected to study the large scale system with EOLEare first identified. A problem of mass limits the possibilities to directly extrapolate at a larger scale, in a deterministic approach, data obtained with EOLE. It is decided to study the separation in a probabilistic approach by developing a new multi-body model. A great variety of uncertainties are taken into account, from the aerodynamic interactions to the atmospheric turbulences, the separation mechanism, and the launch trajectories. A new performance criterion is developed to quantify the safety of the separation phase. It is based on elementary geometries and it could beused in other contexts.A sensitivity analysis is applied to estimate the influence of the uncertainties on the performance criterion. Given the large number of factors of uncertainty and the non-negligible simulation time,the model is first simplified. The Morris method is applied to identify the factors with a low influence which can be fixed to a given value. It is a frequent step, but it is shown that there isa high risk to fix the wrong factors. Any further study would then be altered. The risk to fix the wrong factors is significantly reduced by improving the factors sampling, the calculation of their influence, and the statistical treatment of the results. This new method is used to estimate the influence of the uncertainties at the separation and the safety is improved by optimizing launch trajectories.
|
Page generated in 0.0246 seconds