• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 2
  • 1
  • Tagged with
  • 13
  • 13
  • 13
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Soft x-ray spectroscopy studies of novel electronic materials using synchrotron radiation

Newby Jr., David Henry 12 March 2016 (has links)
Soft x-ray spectroscopy can provide a wealth of information on the electronic structure of solids. In this work, a suite of soft x-ray spectroscopies is applied to organic and inorganic materials with potential applications in electronic and energy generation devices. Using the techniques of x-ray absorption (XAS), x-ray emission spectroscopy (XES), and x-ray photoemission spectroscopy (XPS), the fundamental properties of these different materials are explored. Cycloparaphenylenes (CPPs) are a recently synthesized family of cyclic hydrocarbons with very interesting properties and many potential applications. Unusual UV/Visible fluorescence trends have spurred a number of theoretical investigations into the electronic properties of the CPP family, but thus far no comprehensive electronic structure measurements have been conducted. XPS, XAS, and XES data for two varieties, [8]- and [10]-CPP, are presented here, and compared with the results of relevant DFT calculations. Turning towards more application-centered investigations, similar measurements are applied to two materials commonly used in solid oxide fuel cell (SOFC) cathodes: La_(1−x)Sr_(x)MnO_(3) (LSMO) and La_(1−x)Sr_(x)Co_(1−y)Fe_(y)O_(3) (LSCF). Both materials are structurally perovskites, but they exhibit strikingly different electronic properties. SOFC systems very efficiently produce electricity by catalyzing reactions between oxygen and petroleum-based hydrocarbons at high temperatures (> 800 C). Such systems are already utilized to great effect in many industries, but more widespread adoption could be had if the cells could operate at lower temperatures. Understanding the electronic structure and operational evolution of the cathode materials is essential for the development of better low-temperature fuel cells. LSCF is a mixed ion-electron conductor which holds promise for low-temperature SOFC applications. XPS spectra of LSCF thin films are collected as the films are heated and gas-dosed in a controlled environment. The surface evolution of these films is discussed, and the effects of different gas environments on oxygen vacancy concentration are elucidated. LSMO is commonly used in commercial fuel cell devices. Here the resonant soft x-ray emission (RIXS) spectrum of LSMO is examined, and it is shown that the inelastic x-ray emission structure of LSMO arises from local atomic multiplet effects.
2

Materials Science of Multilayer X-ray Mirrors

Ghafoor, Naureen January 2008 (has links)
This thesis treats the reflective and structural properties of multilayer structures. Soft X-ray multilayer mirrors intended as near-normal incidence reflective optics and polarizers in the water window (λ=2.4-4.4 nm) are the main focus. Such mirrors require multilayer periodicities between 1.2-2.2 nm, a large number ~600of multilayer periods (N), and atomically flat interfaces. Bi-metallic multilayers were deposited by dual-target magnetron sputtering on Si(001) Geometrical roughness and intermixing/interdiffusion at the interfaces were investigated in connection with the impact of ion-surface interactions during growth of Cr/Ti, Cr/Sc, and Ni/V multilayers. This was achieved by comparing multilayers grown with or without high-flux low energy (Eion<30 eV) ion assistance. The use of modulated ion assistance resulted in a substantial improvement of interface flatness and abruptness in each of theAb-initio calculations indicate that the stabilization of the amorphous layer structure is due to a lowering of the total energy of the system by eliminating high energy incoherent interfaces between crystalline Sc and Cr. Light element incorporation in Cr/Sc multilayers was investigated through residual gas pressure variation. It is shown that multilayers retain their structural and optical properties within the high vacuum range of 2×10-7-to-2×10-6 Torr. The incorporation of 34 at.% nitrogen at a higher residual gas pressure ( ~2×10-5 Torr) resulted in highly textured understoichiometricx/ScNy multilayers. As a result of nitrogen incorporation, interface widths as small as 0.29 nm, and near-normal incidence reflectivity enhancement (at λ=3.11 nm) by 100 % (compared to pure Cr/Sc multilayers) was achieved. Light element incorporation was also found to be advantageous for the thermal stability of the multilayers. In-situ hard X-ray reflectivity measurements performed during isothermal annealing in thex/ScNy are stable up to 350 °C. As an alternative route to metallic multilayers, single crystal CrN/ScN superlattices, grown by reactive sputtering in N atmosphere onto MgO(001), were also investigated. The superlattice synthesis at 735 °C, resulted in highly abrupt interfaces with minimal interface widths of 0.2 nm. As-deposited superlattices with only 61 periodsλ=3.11 nm as well as very high thermal stability up to 850 °C. / Denna avhandling behandlar syntes, analys, och materialvetenskap rörande så kallade multilagerspeglar för mjuk röntgenstrålning. Speglarna är lämpade som optiska komponenter för instrument såsom röntgenmikroskop i våglängdsområdet 2,4 nm till 4,4 nm, även kallat vattenfönstret. Tack vare de senaste decenniernas stora teknologiska och vetenskapliga framsteg i att framställa mycket intensiva källor för mjuk röntgenstrålning, såsom tex synkrotronljuskällor, frielektronlasrar, och plasmagenererade källor, är det nu tänkbart att utnyttja denna strålning till nya tillämpningar som tidigare inte varit möjliga. Några exempel är; röntgenmikroskopi av biologiska preparat med upplösning ca 1/100 av det som är möjligt med synligt ljus, fotolitografi av Det finns flera stora utmaningar för att lyckas tillverka multilagerspeglar. Först och främst måste man hitta materialkombinationer som ger upphov till reflektion i mellanytorna mellan materialen men som inte samtidigt absorberar all röntgenstrålning. Dessutom måste materialen gå att belägga på varandra i flera hundra tunna lager, vart och ett endast ca 1 nanometer tjockt, med en ytojämnhet om endast några tiondels nanometer. Den absoluta tjockleks precision i varje I det här arbetet har fyra olika typer av multilagerbeläggningar undersökts: krom/titan (Cr/Ti), krom/skandium (Cr/Sc), nickel/vanadin (Ni/V) samt kromnitrid/skandiumnitrid (CrN/ScN). Materialvalen har baserats på teoretiska beräkningar som visat att dessa materialsystem genererar mycket god reflektans i vattenfönstret. Varje kombination av metaller är optimal för en specifik våglängd och de individuella lagertjocklekarna måste optimeras teoretiskt för varje enskilt För Cr/Sc multilager har vi visat att lagren som beläggs har en oordnad, så kallad amorf, struktur mellan metallatomerna som har sitt ursprung i att multilagrets totala energi kan sänkas om mellanytor mellan kristallint Cr och kristallint Sc kan undvikas. Studier av effekterna av kväveupptag hos Cr/Sc multilagerspeglar under sputtringsprocessen har lett till ökad förståelse av materialsystemet. Till exempel har vi visat att kvävet framförallt binder till de inre regionerna av Sc och inte så mycket till Cr-lagren eller i mellanytorna. Med kväve i strukturen har vi gjort speglar som tål höga temperaturer, vilket är av stor betydelse för tillämpningar baserade högintensiva ljuskällor. Så kallade supergitter, dvs multilager
3

Growth and Nano-structural Studies of Metallic Multilayer for X-ray Mirrors

Ghafoor, Naureen January 2005 (has links)
<p>A part of the Ph.D. project focused on growth and characterization of metal multilayers is presented in this licentiate thesis. The main interest in carrying out this research is to develop highly reflective normal-incidence condenser mirrors for soft X-ray microscopy studies in the water window (λ=2.4-4.2 nm) wavelength regime.</p><p>Transition metals like Sc, Ti V, etc. have been considered because of the presence of their 2p-absorption edges within the water window. An anomalous dispersion at absorption edges has been utilized to get enhanced reflectance of soft X-rays. Since a single surface exhibits a very poor X-ray reflectivity, Cr/Sc, Cr/Ti, and Ni/V multilayers were grown in order to coherently add many reflections from several interfaces. The selection of Cr and Ni, as spacer layer, was made on the basis of their X-ray optical contrasts with the above-mentioned transition metals. The multilayer design, i.e., the individual layer thicknesses and the total number of bilayers, directly influences the resultant reflectance and careful determination was therefore made with the aid of computer simulations.</p><p>All multilayers were grown on chemically cleaned Si substrates by ion-assisted dual target magnetron sputtering under high vacuum (~10<sup>-7</sup> Torr) conditions. The effect of low and high ion-flux bombardment of low energy (<50 eV) Ar ions, on growing surfaces was studied for all material systems. Furthermore, a two-stage deposition of each individual layer with modulated ion-energies was applied in order to obtain smooth and abrupt interfaces with as small intermixing as possible. Ion-surface interactions were also theoretically considered for estimating an appropriate ion-flux and ion-energy range desired for sufficient ad-atom mobilities.</p><p>X-ray reflectivity and transmission electron microscopy have been the main probes for multilayer characterization in this work. For the Cr/Ti multilayer designed for normal incidence and grown with optimized two-stage ion-energy modulation, a peak reflectance of 2.1% was achieved at the Ti-2p absorption edge (λ=2.74 nm). For a multilayer mirror designed for the Brewster angle a maximum reflectance of 4.3% was accomplished. These measurements were made at the synchrotron radiation source BESSY in Berlin. Specular reflectivity and diffuse scattering scans were utilized for quantitative and qualitative analysis of the vertical and lateral structure of the multilayers. At-wavelength measurements of a series of Cr/Ti multilayers revealed the accumulation of roughness with increasing number of bilayers (N>100) for this material system. Hard X-ray reflectivity and diffractometry were used for quality checks of the multilayers for rapid feedback to the deposition. In-situ annealing using hard X-ray reflectivity was also performed to assess the thermal stability of Cr/Ti multilayers. It was found that probably due to a strong thermal diffusion the degradation of multilayers (with bilayer period of 1.37 nm) in this material system occurs just above the growth temperature (~40°C). The accumulation of a low spatial frequency "waviness" with increasing number of layers in Cr/Ti multilayers was investigated by transmission electron microscopy. The influence of process conditions on multilayer structure with different periodicities was investigated by TEM analyses of a series of three samples for each of the above-mentioned material system. The Cr/Sc multilayers have shown the most flat and abrupt interface structure without any significant roughness evolution when grown with optimum process parameters.</p> / Report code: LiU-TEK-LIC-2005:48. On the day of the defence data the status of article I was: Accepted.
4

Probing dynamics of complex ordered phases in colossal magnetoresistive transition-metal oxides using coherent resonant soft x-ray scattering

Turner, Joshua J., 1979- 03 1900 (has links)
xxv, 207 p. ; ill. (some col.) A print copy of this title is available from the UO Libraries, under the call number: SCIENCE QD172.T6 T87 2008 / A growing interest in the physics of complex systems such as in the transition-metal oxide family has exploded recently, especially in the last 20 years or so. One notable effect is the change in electrical resistivity of a system by orders of magnitude in an applied magnetic field, coined the "colossal magnetoresistance effect". In efforts to understand these types of effects, there has been an unveiling of a rich variety of phenomena in the field of strongly correlated electron physics that has come to dominate the current scientific times. Most notable is the competition of myriad types of order: magnetic, lattice, charge and orbital all self-organize to display a fascinating array of phases on a variety of length scales. Furthermore, it has become apparent that new probes are needed to grasp some of this physics that transcends current condensed matter theory, where much of the behavior of these types of systems has remained unexplored. We have developed a new technique to gain more information about the system than with conventional x-ray diffraction. By scattering highly coherent, low energy x-rays, we can measure manganite speckle: a "fingerprint' of the microscopic structure in the bulk. The coherence of the x-rays can further be used to elucidate new insight into the dynamics of these phases. We describe here a number of novel effects near the orbital order phase transition in a half-doped manganite. We observe a small fluctuating component in the scattered signal that is correlated with three effects: both a rapidly decreasing total signal and orbital domain size, as well as an abrupt onset of a broad background intensity that we attribute to the thermal production of correlated polarons. Our results suggest that the transition is characterized by a competition between a pinned orbital domain topology that remains static, and mobile domain boundaries that exhibit slow, spatiotemporal fluctuations. This study opens up a new chapter to the study of manganite physics as coherent x-ray scattering offers a new direction to understand the strange and exotic behavior demonstrated in the multifaceted manganites. / Adviser: Stephen Kevan
5

Growth and Nano-structural Studies of Metallic Multilayer for X-ray Mirrors

Ghafoor, Naureen January 2005 (has links)
A part of the Ph.D. project focused on growth and characterization of metal multilayers is presented in this licentiate thesis. The main interest in carrying out this research is to develop highly reflective normal-incidence condenser mirrors for soft X-ray microscopy studies in the water window (λ=2.4-4.2 nm) wavelength regime. Transition metals like Sc, Ti V, etc. have been considered because of the presence of their 2p-absorption edges within the water window. An anomalous dispersion at absorption edges has been utilized to get enhanced reflectance of soft X-rays. Since a single surface exhibits a very poor X-ray reflectivity, Cr/Sc, Cr/Ti, and Ni/V multilayers were grown in order to coherently add many reflections from several interfaces. The selection of Cr and Ni, as spacer layer, was made on the basis of their X-ray optical contrasts with the above-mentioned transition metals. The multilayer design, i.e., the individual layer thicknesses and the total number of bilayers, directly influences the resultant reflectance and careful determination was therefore made with the aid of computer simulations. All multilayers were grown on chemically cleaned Si substrates by ion-assisted dual target magnetron sputtering under high vacuum (~10-7 Torr) conditions. The effect of low and high ion-flux bombardment of low energy (&lt;50 eV) Ar ions, on growing surfaces was studied for all material systems. Furthermore, a two-stage deposition of each individual layer with modulated ion-energies was applied in order to obtain smooth and abrupt interfaces with as small intermixing as possible. Ion-surface interactions were also theoretically considered for estimating an appropriate ion-flux and ion-energy range desired for sufficient ad-atom mobilities. X-ray reflectivity and transmission electron microscopy have been the main probes for multilayer characterization in this work. For the Cr/Ti multilayer designed for normal incidence and grown with optimized two-stage ion-energy modulation, a peak reflectance of 2.1% was achieved at the Ti-2p absorption edge (λ=2.74 nm). For a multilayer mirror designed for the Brewster angle a maximum reflectance of 4.3% was accomplished. These measurements were made at the synchrotron radiation source BESSY in Berlin. Specular reflectivity and diffuse scattering scans were utilized for quantitative and qualitative analysis of the vertical and lateral structure of the multilayers. At-wavelength measurements of a series of Cr/Ti multilayers revealed the accumulation of roughness with increasing number of bilayers (N&gt;100) for this material system. Hard X-ray reflectivity and diffractometry were used for quality checks of the multilayers for rapid feedback to the deposition. In-situ annealing using hard X-ray reflectivity was also performed to assess the thermal stability of Cr/Ti multilayers. It was found that probably due to a strong thermal diffusion the degradation of multilayers (with bilayer period of 1.37 nm) in this material system occurs just above the growth temperature (~40°C). The accumulation of a low spatial frequency "waviness" with increasing number of layers in Cr/Ti multilayers was investigated by transmission electron microscopy. The influence of process conditions on multilayer structure with different periodicities was investigated by TEM analyses of a series of three samples for each of the above-mentioned material system. The Cr/Sc multilayers have shown the most flat and abrupt interface structure without any significant roughness evolution when grown with optimum process parameters. / <p>Report code: LiU-TEK-LIC-2005:48. On the day of the defence data the status of article I was: Accepted.</p>
6

Soft X-ray Spectromicroscopy of Radiation Damaged Perfluorosulfonic Acid

Melo, Lis GA January 2018 (has links)
Climate change has propelled the development of alternative power sources that minimize the emission of greenhouse effect gases. Widespread commercialization of polymer electrolyte membrane fuel cell (PEM-FC) technology for transportation and stationary applications requires cost-competitiveness with improved durability and performance. Advantages compared to battery electric vehicles include fast refueling and long distance range. One way to improve performance and minimize costs of PEM-FC involves the optimization of the nanostructure of the catalyst layer. The rate limiting oxygen reduction reaction occurs at a triple-phase interface in the cathode catalyst layer (CL) between the proton conductor perfluorosulfonic acid, PFSA, the Pt catalyst particles decorating the electron conductor carbon support and gaseous O2 available through the porous framework of the carbon support. Visualization and quantitation of the distribution of components in the CL requires microscopy techniques. Electron and X-ray microscopy have been used to characterize the distribution of the PFSA relative to the carbon support and porosity in CLs. Understanding and limiting the analytical impact of radiation damage, which occurs due to the ionizing nature of electrons and X-rays, is needed to improve quantitation, particularly of PFSA. This thesis developed scanning transmission X-ray microscopy (STXM) methods for quantitation of damage due to electron and soft X-ray irradiation in PFSA materials. Chemical damage to PFSA when irradiated by photons and electrons is dominated by fluorine loss and CF2-CF2 amorphization. The quantitative results are used to set maximum dose limits to help optimize characterization and quantitation of PFSA in fuel cell cathode catalyst layers using: analytical electron microscopy, X-ray microscopy, spectromicroscopy, spectrotomography, spectroptychography and spectro-ptycho-tomography. / Thesis / Doctor of Philosophy (PhD) / Polymer electrolyte membrane fuel cells are an alternative, environmentally friendly power source for transportation and stationary applications. Major challenges for mass production include cost competitiveness, improved durability and performance. A key component to enhance the performance and lower costs involves understanding and improving the spatial distribution of the perfluorosulfonic acid (PFSA) polymer in the catalyst layer. The ionizing nature of electrons and X-rays used in microscopy characterization tools challenges PFSA characterization since this material is radiation sensitive. This thesis developed measurement protocols and methods for quantitative studies of radiation damage to PFSA and other polymers using scanning transmission X-ray microscopy. The chemical changes to PFSA films irradiated with photons, electrons and ultraviolet (UV) photons were studied. The quantitative results identify limits to analytical electron and soft X-ray microscopy characterization of PFSA. The results are used to optimize methods for soft X-ray microscopy characterization of PFSA in fuel cell applications.
7

Effects of Solar Soft X-rays on Earth's Atmosphere

Samaddar, Srimoyee 06 February 2023 (has links)
The soft x-rays (wavelengths less than 30 nm) emitted by the sun are responsible for the production of high energy photoelectrons in the D and E regions of the ionosphere, where they deposit most of their energy. The photoelectrons created by this process are the main drivers for dissociation of nitrogen ($N_2$) molecules in the altitude range below 200 km. The dissociation of $N_2$ is one of main mechanisms responsible for the production of nitric oxide (NO) at these altitudes. These processes are important to understand because NO plays a critical role in controlling the temperatures of various regions of Earth's atmosphere. In order to estimate the dissociation rate of $N_2$ we need its dissociation cross-sections. The dissociation cross-sections of $N_2$ due to inelastic collisions with electrons is primarily es- timated from the cross-sections of its excitation states (using predissociation factors) and dissociative ionization channels. Predissociation is the transition without emission of radi- ation from a stable excited state to an unstable excited state of a molecule that leads to dissociation. Unfortunately, the lack of cross-section data, particularly at high electron en- ergies and of higher excited states of N 2 and N 2 + , introduces uncertainty in the dissociation cross-section and subsequently the dissociation rate calculation, which leads to uncertainties in the NO production rate. We have updated a photoelectron model with thoroughly-revised electron impact cross- section data of all major species and experimentally determined predissociation factors. The dissociation rates of $N_2$ using this model are compared to the dissociation rates obtained using another existing (Solomon and Qian [2005]) model. A parameterized version of the updated dissociation rates are used in a one-dimensional global average thermospheric/ ionospheric model, ACE1D (Atmospheric Chemistry and Energetics), to obtain the updated production rates of NO. In the final chapter, we use the ACE1D model to show that the energies deposited by the solar soft x-rays in the lower thermosphere at altitudes between 100 -150 km affect the temperature of the Earth's thermosphere at altitudes well above 300 km. By turning off the input solar flux in the different wavelength bins of the model iteratively, we are able to demonstrate that the maximum change in exospheric temperature is due to changes in the soft solar x-ray bins. We also show, using the thermodynamic heat equation, that the molecular diffusion via non-thermal photoelectrons is the main source of heat transfer to the upper ionosphere/thermosphere. Moreover, these temperature changes and heating effects of the solar soft x-rays are comparable to that of the much stronger He II 30.4nm emission. Finally, we show that the uncertainties in the solar flux irradiance at these soft x-rays wavelengths result in corresponding uncertainties in the modeled exospheric temperature, and these uncertainties increase substantially with increased solar activity. / Doctor of Philosophy / The radiation from the sun covers a wide range of the electromagnetic spectrum. The soft x-rays with wavelengths less than 30 nm are the most energetic and variable part of the spectrum, and would have detrimental effects on humans were they not absorbed by the atmosphere. The absorption of soft x-rays by the Earth's atmosphere at altitudes near 100- 150 km creates ionized and energized particles. These energetic changes can affect and even damage the satellites in low Earth orbit, and can cause radio communication blackouts and radiation storms (large quantities of energetic particles, protons and electrons accelerated by processes at and near the Sun). Therefore, we need to have good models that can quantify these changes in order to correctly predict their effects on our atmosphere, and help to mitigate any harmful effects. The soft x-rays and the extreme ultraviolet (EUV) are responsible for ionization of the major neutral species, $N_2$ , $O_2$ and O, in the Earth's atmosphere, which leads to the production of ions and energetic photoelectrons. These high energy photoelectrons can cause further ion- ization, excitation and dissociation. We study the dissociation of $N_2$ by these photoelectrons to create neutral N atoms. The N atoms created via this process combine with the $O_2$ in the atmosphere to produce nitric oxide (NO), which is one of the most important minor constituents because of its role in regulating atmospheric heating/cooling. The production of NO peaks near 106 km altitude, where most of the energy of the soft x-rays are deposited. However, they also affect the temperature of the upper atmosphere well above this altitude. This is because the energy of the photoelectrons is conducted to the upper atmosphere by collisions of electrons and ions with ambient neutral atoms and molecules, thus increasing their temperature. In this study, we use modeling of soft x-ray irradiance, photoelectron ionization, excitation and dissociation rates and atmospheric neutral temperature to quantify the effects of soft x-rays on the Earth's atmosphere.
8

Establishment of the Physical and Technical Prerequisites for the Determination of the Relative Biological Effectiveness of Low-energy Monochromatic X-rays / Etablierung der physikalischen und technischen Voraussetzungen für die Bestimmung der relativen biologischen Wirksamkeit niederenergetischer, monochromatischer Röntgenstrahlung

Lehnert, Anna 15 February 2006 (has links) (PDF)
Low-energy X-rays in the range 10 - 50 keV have a wide application. One important application in radiological diagnostics is mammography, whereas, in radiotherapy, they are used for irradiation of superficial tumours, in brachytherapy and photon activation therapy. The importance of soft X-rays for fundamental radiobiological research is based on the fact, that all species of ionizing radiation produce a wide spectrum of secondary electrons, mainly responsible for the primary damage to be transformed into an observable radiobiological effect. By variation of the primary soft X-ray energy, a variation in the secondary electron spectra and therefore in the local energy deposition is provided. However, up to now no definitive conclusions about the relative biological effectiveness (RBE) of soft X-rays can be made due to its dependence on the photon energy, biological endpoint and dose range and the consequent large spread of the published data. The superconducting electron linear accelerator of high brilliance and low emittance (ELBE) at the Forschungszentrum Rossendorf with an electron energy up to about 40 MeV is used, among all, to generate X-rays in a wide energy range. One method for production of intensive, quasi-monochromatic X-rays in the energy range 10 - 100 keV tunable in energy, is by channeling of electrons in a perfect crystal. This X-ray source has many advantages over the most widespread X-ray source, which is the X-ray tube. Although the physical basis of the channeling effect has been previously investigated, the feasibility of an X-ray source based on channeling radiation (CR) for radiobiological studies has been for the first time theoretically and experimentally studied and a dedicated CR source built and optimised in the frame of this thesis. CR has been theoretically characterised in order to estimate its applicability for radiobiological studies. A good agreement between the theoretical predictions and the measured data has been found. The intrinsic properties of the CR source have led to the conclusion that monochromatisation is necessary. A monochromator based on HOPG mosaic crystals, was designed and manufactured. The dosimetrical methods have been investigated at the CR source as well as at an X-ray tube. Absolute dose measurements using an ionisation chamber and spectral dose distribution determination using semiconductor detectors have been performed. In addition, an unconventional system based on thermally stimulated exoelectron emission (TSEE) detectors, allowing to measure dose in a small volume and in the real cell environment has been tested and has proven itself appropriate in a variable dose range and in a liquid environment, in cases where reproducible laboratory conditions are provided. The biological endpoints clonogenic cell survival and micronucleus induction have been optimised for two established cell lines. The human mammary epithelial cells MCF-12A have been chosen due to the importance of RBE of soft X-rays for determination of risk from mammography. On the other hand, the use of the widespread mouse fibroblast cell line NIH/3T3 allows to compare the results with previously published data. The influence of the specific irradiation procedure at ELBE on the control level of cell survival and micronucleus induction has been tested and an irradiation system was developed and constructed. In addition, the RBE for soft X-rays was determined by X-ray tube irradiation at the Medical Department of Technische Universität Dresden. The RBE of 10 kV and 25 kV X-rays relative to 200 kV X-rays was determined. The RBE was found to be in the range from 1.0 to 1.4, depending on the used radiation quality, cell line and the biological endpoint, in agreement with previously published data for the same radiation qualities. These results confirm that systematical studies of RBE dependence on photon energy at the ELBE CR source are necessary and feasible.
9

Establishment of the Physical and Technical Prerequisites for the Determination of the Relative Biological Effectiveness of Low-energy Monochromatic X-rays

Lehnert, Anna 24 October 2005 (has links)
Low-energy X-rays in the range 10 - 50 keV have a wide application. One important application in radiological diagnostics is mammography, whereas, in radiotherapy, they are used for irradiation of superficial tumours, in brachytherapy and photon activation therapy. The importance of soft X-rays for fundamental radiobiological research is based on the fact, that all species of ionizing radiation produce a wide spectrum of secondary electrons, mainly responsible for the primary damage to be transformed into an observable radiobiological effect. By variation of the primary soft X-ray energy, a variation in the secondary electron spectra and therefore in the local energy deposition is provided. However, up to now no definitive conclusions about the relative biological effectiveness (RBE) of soft X-rays can be made due to its dependence on the photon energy, biological endpoint and dose range and the consequent large spread of the published data. The superconducting electron linear accelerator of high brilliance and low emittance (ELBE) at the Forschungszentrum Rossendorf with an electron energy up to about 40 MeV is used, among all, to generate X-rays in a wide energy range. One method for production of intensive, quasi-monochromatic X-rays in the energy range 10 - 100 keV tunable in energy, is by channeling of electrons in a perfect crystal. This X-ray source has many advantages over the most widespread X-ray source, which is the X-ray tube. Although the physical basis of the channeling effect has been previously investigated, the feasibility of an X-ray source based on channeling radiation (CR) for radiobiological studies has been for the first time theoretically and experimentally studied and a dedicated CR source built and optimised in the frame of this thesis. CR has been theoretically characterised in order to estimate its applicability for radiobiological studies. A good agreement between the theoretical predictions and the measured data has been found. The intrinsic properties of the CR source have led to the conclusion that monochromatisation is necessary. A monochromator based on HOPG mosaic crystals, was designed and manufactured. The dosimetrical methods have been investigated at the CR source as well as at an X-ray tube. Absolute dose measurements using an ionisation chamber and spectral dose distribution determination using semiconductor detectors have been performed. In addition, an unconventional system based on thermally stimulated exoelectron emission (TSEE) detectors, allowing to measure dose in a small volume and in the real cell environment has been tested and has proven itself appropriate in a variable dose range and in a liquid environment, in cases where reproducible laboratory conditions are provided. The biological endpoints clonogenic cell survival and micronucleus induction have been optimised for two established cell lines. The human mammary epithelial cells MCF-12A have been chosen due to the importance of RBE of soft X-rays for determination of risk from mammography. On the other hand, the use of the widespread mouse fibroblast cell line NIH/3T3 allows to compare the results with previously published data. The influence of the specific irradiation procedure at ELBE on the control level of cell survival and micronucleus induction has been tested and an irradiation system was developed and constructed. In addition, the RBE for soft X-rays was determined by X-ray tube irradiation at the Medical Department of Technische Universität Dresden. The RBE of 10 kV and 25 kV X-rays relative to 200 kV X-rays was determined. The RBE was found to be in the range from 1.0 to 1.4, depending on the used radiation quality, cell line and the biological endpoint, in agreement with previously published data for the same radiation qualities. These results confirm that systematical studies of RBE dependence on photon energy at the ELBE CR source are necessary and feasible.
10

Phase-Matching Optimization of Laser High-Order Harmonics Generated in a Gas Cell

Sutherland, Julia Robin Miller 05 July 2005 (has links) (PDF)
Ten-millijoule, thirty-five femtosecond, 800 nm (~40 nm bandwidth) laser pulses are used to study high-order harmonic generation in helium- and neon-filled gas cells of various lengths. Harmonic orders in the range of 50 to 100 are investigated. A semi-infinite cell geometry produces brighter harmonics than cells of sub-centimeter length. In the semi-infinite geometry, the gas occupies the region from the focusing lens to a thin exit foil near the laser focus. Counter-propagating light is used to directly probe where the high harmonics are generated within the laser focus and to investigate phase matching. The phase matching under optimized harmonic generation conditions was found to be unexpectedly good with phase zones many millimeters long. Restricting the laser beam with an 8 mm aperture in front of the focusing lens increases the emission of most harmonic orders observed by as much as an order of magnitude. Optimal harmonic generation pressures were found to be about 55 torr in neon and 110 torr in helium. The optimal position of the laser focus was found to be a few millimeters inside the exit foil of the gas cell. Probing with counter-propagating light reveals that in the case of neon the harmonics are generated in the last few millimeters before the exit foil. In helium, the harmonics are produced over a longer distance. Direct measurement shows that the re-absorption limit for mid-range harmonics in neon has been reached.

Page generated in 0.1567 seconds