Spelling suggestions: "subject:"soil atrength"" "subject:"soil 1strength""
11 |
Stress distribution within geosynthetic-reinforced soil structuresYang, Kuo-hsin 23 October 2009 (has links)
This dissertation evaluates the behavior of Geosynthetic-Reinforced Soil (GRS)
retaining structures under various soil stress states, with specific interest in the
development and distribution of soil and reinforcement stresses within these structures.
The stress distribution within the GRS structures is the basis of much of the industry’s
current design. Unfortunately, the stress information is often not directly accessible
through most of current physical testing and full-scale monitoring methods. Numerical
simulations like the finite element method have provided good predictions of
conservatively designed GRS structures under working stress conditions. They have provided little insight, however, into the stress information under large soil strain
conditions. This is because in most soil constitutive models the post-peak behavior of
soils is not well represented. Also, appropriate numerical procedures are not generally
available in finite element codes, the codes used in geotechnical applications. Such
procedures are crucial to properly evaluating comparatively flexible structures like GRS
structures. Consequently, this study tries to integrate newly developed numerical procedures
to improve the prediction of performance of GRS structures under large soil strain
conditions. There are three specific objectives: 1) to develop a new softening soil model
for modeling the soil’s post-peak behavior; 2) to implement a stress integration algorithm,
modified forward Euler method with error control, for obtaining better stress integration
results; and 3) to implement a nonlinear reinforcement model for representing the
nonlinear behavior of reinforcements under large strains. The numerical implementations
were made into a finite element research code, named Nonlinear Analysis of
Geotechnical Problems (ANLOG). The updated finite element model was validated
against actual measurement data from centrifuge testing on GRS slopes (under both
working stress and failure conditions).
Examined here is the soil and reinforcement stress information. This information
was obtained from validated finite element simulations under various stress conditions.
An understanding of the actual developed soil and reinforcement stresses offers important
insights into the basis of design (e.g., examining in current design guidelines the design
methods of internal stability). Such understanding also clarifies some controversial
issues in current design. This dissertation specifically addresses the following issues: 1)
the evolution of stresses and strains along failure surface; 2) soil strength properties (e.g.,
peak or residual shear strength) that govern the stability of GRS structures; 3) the
mobilization of reinforcement tensions.
The numerical result describes the stress response by evaluating the development
of soil stress level S. This level is defined as the ratio of the current mobilized soil shear
strength to the peak soil shear strength. As loading increases, areas of high stress levels
are developed and propagated along the potential failure surface. After the stress levels
reach unity (i.e., soil reaches its peak strength), the beginning of softening of soil strength is observed at both the top and toe of the slope. Afterward, the zones undergoing soil
softening are linked, forming a band through the entire structure (i.e., a fully developed
failure surface). Once the band has formed and there are a few loading increments, the
system soon reaches, depending on the tensile strength of the reinforcements, instability.
The numerical results also show that the failure surface corresponds to the locus of
intense soil strains and the peak reinforcement strain at each reinforcement layer. What
dominates the stability of GRS structures is the soil peak strength before the completed
linkage of soil-softening regions. Afterward, the stability of GRS structures is mainly
sustained by the soil shear strength in the post-peak region and the tensile strength of
reinforcements. It was also observed that the mobilization of reinforcement tensions is
disproportional to the mobilization of soil strength. Tension in the reinforcements is
barely mobilized before soil along the failure surface first reaches its peak shear strength.
When the average mobilization of soil shear strength along the potential failure surface
exceeds approximately 95% of its peak strength, the reinforcement tensions start to be
rapidly mobilized. Even so, when the average mobilization of soil strength reaches 100%
of its peak shear strength, still over 30% of average reinforcement strength has not yet
been mobilized. The results were used to explain important aspects of the current design
methods (i.e., earth pressure method and limit equilibrium analysis) that result in conservatively designed GRS structures. / text
|
12 |
A Finite Element Modeling Study On The Seismic Response Of Cantilever Retaining WallsErtugrul, Ozgur Lutfi 01 September 2006 (has links) (PDF)
A numerical study was performed in order to investigate the effects of base excitation
characteristics (peak acceleration amplitude and frequency of the excitation), soil strength
and wall flexibility on the dynamic response of cantilever earth-retaining walls. In this
study, Plaxis v8.2 dynamic finite element code was used. Previous 1-g shake table tests
performed by Ç / ali& / #56256 / & / #56570 / an (1999) and Yunatç / i (2003) were used to compare the experimental
results with those obtained by finite element analysis. Comparison of experimental and
numerical results indicated that the code was capable of predicting the dynamic lateral
thrust values and bending moment profiles on the wall stems. In the light of these
validation studies, a parametric study was carried on for a configuration that consists of an
8 meters high retaining wall supporting the same height of dry cohesionless backfill. Total
and incremental dynamic thrust values, points of application and dimensionless bending
moment values were presented together with the results obtained from commonly used
pseudo static Mononobe-Okabe method and Steedman-Zeng approaches. According to
the finite element analyses results, total dynamic active thrust act at approximately 0.30H
above wall base. Base motion frequency becomes an important factor on magnitudes of
dynamic active thrust when it approaches to the natural frequency of the system.
Significantly high overturning moments were predicted at wall base in this case. It was
observed that increasing wall rigidity causes an increase in forces acting on the wall stem during
dynamic motion.
|
13 |
Estrutura e água em argissolo sob distintos preparos na cultura do milho / Soil structure and water in an alfisol under different tillages for corn cropKaiser, Douglas Rodrigo 15 October 2010 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The retention and availability of water in the soil are controlled by soil structure and its temporal variation is associated with the weather and the crops needs. Water also controls the aeration and soil penetration resistance, factors that are directly linked to root growth. The overall objective of this study was to evaluate the effect of management systems and soil compaction levels on soil physical properties to define the conditions that favor the retention, storage and availability of water to plants while maintaining aeration and soil resistance favorable to root growth. To meet these goals an experiment was set up in the experimental station of the Soils Department-UFSM. The area was under fallow and in 2002 year it was incorporated into the crop production under no-tillage. The treatments were: notillage
(NT) no-tillage with compaction (NTC), subsoiling (Sub), chiseling (ESC) and conventional tillage (CT). The design was a randomized block design with four replications.
Undisturbed soil samples were collected in the soil layers 0.0 to 0.05, 0.05 to 0.10 0.10 0,15; 0.15 to 0.20; 0.20 to 0.30, 0.30 to 0.40 and 0.40 to 0.50 m to determine the bulk density (BD), pore distribution, air permeability (Ka), saturated hydraulic conductivity (Ks) and the
water retention curve. For the same layers, soil moisture (UV) was monitored continuously down to the layer of 0.30 m, using an automated TDR. In the other layers readings were taken weekly with a manual TDR. The penetration resistance (Rp) was determined at six points across the plant rows, under eight conditions of soil moisture. The maize parameters evaluated were the emergency, dry mass, root distribution at physiological maturity and yield.
The NTC had a higher BD and lower total porosity (Pt) and macropores (Mac) down to 0.40 m depth. The ESC, Sub and the CT reduced the BD and increased Pt. The Ksat and Kl had
little influence of the treatments, but showed positive correlation with Pt and negatively with Mac and Ds. The main benefit of tillage is the reduction of its resistance to penetration and improved soil aeration which allows for better root growth. No-tillage did not store more water
for plants in relation to conventional tillage, subsoiling and chiseling. Soil compaction increased the water retention in densiest layer, but reduced the plant's ability to exploit the soil, by inhibiting root growth and reduce soil aeration. The compacted soil reached in less
time and kept for longer time restrictive values of soil penetration resistance and air permeability. The dry matter production and grain yield of maize was not affected by managements and compaction levels, although some plant growth factors were outside the appropriate range indicated by the least limiting water range. / A retenção e a disponibilidade de água no solo são controladas pela sua estrutura e a sua variação temporal está associada às condições meteorológicas e à necessidade das
culturas. A água também controla a aeração e a resistência do solo à penetração, que são fatores diretamente ligados ao crescimento do sistema radicular. O objetivo geral desse
estudo foi avaliar o efeito de sistemas de manejo do solo e níveis de compactação sobre as suas propriedades físicas e definir as condições que possam favorecer a retenção, o
armazenamento e a disponibilidade de água às plantas, mantendo a aeração e a resistência do solo favorável ao crescimento radicular. Para atender estes objetivos instalou-se um experimento na área experimental do Departamento de Solos da UFSM. A área utilizada estava sob pouso e, a partir de 2002, foi incorporada ao sistema produtivo, sob sistema de
plantio direto. Os tratamentos estudados foram: plantio direto (PD); plantio direto com compactação adicional (PDc); escarificação profunda (Sub); escarificação superficial (Esc) e
preparo convencional (PC). O delineamento foi em blocos ao acaso com quatro repetições. Amostras de solo com estrutura preservada foram coletadas nas camadas de 0,0 a 0,05;
0,05 a 0,10; 0,10 a 0,15; 0,15 a 0,20; 0,20 a 0,30; 0,30 a 0,40 e 0,40 a 0,50 m, para determinar a densidade (Ds), distribuição de poros, permeabilidade ao ar (Ka), condutividade
hidráulica saturada (Ksat) e a curva de retenção de água. Nestas mesmas camadas, a umidade do solo (Uv) foi monitorada continuamente até a camada de 0,30 m, utilizando-se um TDR automatizado. Nas demais camadas as leituras foram feitas semanalmente com um TDR manual. A resistência do solo à penetração (Rp) foi determinada em seis pontos transversalmente às linhas de semeadura, sob oito condições de umidade do solo. Na cultura do milho avaliou-se a emergência, a massa seca, a distribuição radicular na
maturação fisiológica e a produtividade. O PDc apresentou maior Ds e menor porosidade total (Pt) e macroporos (Mac) até 0,40 m de profundidade. A Esc, Sub e o PC reduziram a
Ds e aumentaram a Pt. A Ksat e a Kl tiveram pouca influência dos tratamentos, mas apresentaram correlação positiva com Pt e Mac e negativa com Ds. O principal beneficio da
mobilização do solo é a redução da sua resistência à penetração e a melhoria na aeração do solo, o que permite um melhor crescimento das raízes. O plantio direto não armazenou maior quantidade de água para as plantas em relação ao preparo convencional e a escarificação. A compactação do solo aumentou a retenção de água na camada mais adensada, mas reduziu a capacidade da planta explorar o solo, por dificultar o crescimento radicular e reduzir a aeração do solo. O solo compactado atingiu em menos tempo e manteve por mais tempo valores de resistência à penetração e de permeabilidade ao ar, considerados restritivos. A produção de massa seca e de grãos do milho não foi afetada pelos manejos e níveis de compactação, mesmo que alguns fatores de crescimento da planta estivessem fora da faixa adequada indicada pelo intervalo hídrico ótimo.
|
14 |
Improvement Of Strength Of Soils At High Water Content Using Pozzolanic MaterialsNarendra, B S 07 1900 (has links) (PDF)
No description available.
|
15 |
The impact of background resolution on Target Acquisitions Weapons Software (TAWS) sensor performancePearcy, Charles M. 03 1900 (has links)
Approved for public release, distribution is unlimited / This study evaluated the sensitivity of TAWS detection range calculations to the spatial resolution of scenario backgrounds. Sixteen independent sites were analyzed to determine TAWS background. Multispectral satellite data were processed to different spatial resolutions from 1m to 8km. The resultant imagery was further processed to determine TAWS background type. The TAWS background type was refined to include soil moisture characteristics. Soil moisture analyses were obtained using in situ measurements, the Air Force's Agricultural-Meteorological (AGRMET) model and the Army's Fast All-seasons Soil Strength (FASST) model. The analyzed imagery was compared to the current default 1o latitude by 1o of longitude database in TAWS. The use of the current default TAWS background database was shown to result in TAWS ranges differing from the 1m standard range by 18-23%. The uncertainty was reduced to 5% when background resolution was improved to 8km in rural areas. By contrast, in urban regions the uncertainty was reduced to 14% when spatial resolution was reduced to 30m. These results suggest that the rural and urban designations are important to the definition of a background database. / First Lieutenant, United States Air Force
|
16 |
Forbedring af jordkvaliteten efter jordpakning : er løsning løsningen?Grossmann, Freya. January 2002 (has links)
Speciale. / Haves kun i elektronisk udg.
|
Page generated in 0.0403 seconds