Spelling suggestions: "subject:"soil texture."" "subject:"oil texture.""
51 |
Soil Genesis and Vegetation Response to Amendments and Microtopography in Two Virginia Coastal Plain Created WetlandsOtt, Emily Thomas 12 June 2018 (has links)
Wetlands serve important ecosystem functions such as carbon sequestration but are often affected by disturbances like urban development, agriculture, and road building. For wetlands created to mitigate losses, it is important that the ecosystem functions successfully replicate those of natural wetlands. Created wetlands have frequently not provided these functions due to issues including low organic carbon (OC), high soil bulk density (BD), lost topsoil, incorrect hydrology, and failure of targeted vegetation establishment. Organic matter (OM) amendments help created wetlands attain these functions quicker, but, their long-term effects are seldom reported. This research's purpose was to measure the long-term effects of treatments at a sandy tidal freshwater wetland created in 2003 (WWE) and a fine-textured, non-tidal wetland created in 2002 (CCW). We tested OM treatments, topsoil amendment, and microtopography effects on soil and vegetation properties at WWE and OM treatments at CCW. Pedogenic changes in soil morphology, physical and chemical properties were detected by comparing data to previous studies at these sites. At both sites, litter and biomass parameters were measured to estimate total mass C. Herbaceous biomass was measured at WWE. At WWE, no long-term OM treatment effects from 78 or 156 Mg ha-1 were observed. Soils in pits had higher OC, lower BD, and lower chroma than soils on mounds. Sandy and loamy HSFI's developed at WWE within four years, but there were fewer sandy indicators after 12 years. Loamy HSFI's were lost at CCW from 2003 to 2016. Plots at WWE that were amended with topsoil had higher soil mass C than the sandy soil due to a finer texture, but total mass C did not vary. At CCW, long-term OM treatment effects were observed, including lower BD, higher soil mass C, and higher tree mass C with increasing compost rates up to 224 Mg ha-1. Overall, the ideal compost loading rate for constructed wetlands varied with wetland type and mitigation goals. Compost rates of 112 Mg ha-1 are sufficient for short term establishment of wetland vegetation and hydric soil properties, but higher rates near 224 Mg ha-1 may be required for effects that last over 10 years. / Ph. D. / Wetlands are unique habitats that provide environmental benefits such as carbon storage but are often negatively affected by human disturbances such as urban development and road construction. When wetlands are constructed to mitigate natural wetland losses, it is important that they successfully provide the benefits of the wetlands they replace. Created wetlands have frequently not functioned like natural wetlands due to soil issues including low organic carbon (OC) and high soil density (BD). Organic matter (OM) amendments such as composted yard waste help created wetlands attain these functions quickly after construction compared to unamnded wetlands. The purpose of this study was to measure long-term (greater than 10 years) effects of OM treatments on soil and vegetation properties at two different created wetlands. The two wetlands were a sandy tidal freshwater wetland created in 2003 (WWE) and a fine-textured, compacted, non-tidal wetland created in 2002 (CCW). Previous soil data were compared to recent soil samples to detect changes in physical and chemical soil properties over time. At WWE, soils in pits accumulated more OM, were higher in carbon, lower in BD, and had greyer color than soils in mounds. Hydric soil field indicators developed from upland soil within four years after construction at WWE. There were no long term compost effects on soil properties compared to a fertilized control, but the compost rates used were low compared to other recommendations, and the wetland was constructed carefully to avoid compaction. There were much higher rates of compost applied at CCW, which produced lower BD, higher soil mass C, and higher tree biomass. We recommend applying OM and avoiding compaction during wetland construction. Ideal OM loading rate depends on wetland type (soil texture, hydrology) and mitigation goals. In the fine-textured, compacted wetland studied here, compost rates of 112 Mg ha⁻¹ are ideal for short term establishment of wetland vegetation and soil properties, but higher rates near 224 Mg ha⁻¹ may be required for long term effects.
|
52 |
Emissividade dos atributos do solo via sensores terrestres e de satélite / Emissivity of soil attributes via terrestrial and satellite sensorsUrbina Salazar, Diego Fernando 05 February 2019 (has links)
A textura e o conteúdo do carbono orgânico (CO) influenciam na resposta espectral dos solos. O estudo desses atributos é de grande importância para a preservação e o manejo adequado da terra na busca de uma agricultura sustentável. O uso de sensores de laboratório e satélites tem se mostrado como uma ferramenta no auxílio para o estudo destes, porém a análise dos atributos do solo com esses sensores tem focado principalmente nas regiões do espectro eletromagnético do visível (Vis), infravermelho próximo (NIR) e infravermelho de ondas curtas (SWIR), com poucos estudos no infravermelho médio (MIR). O objetivo deste trabalho foi identificar o padrão espectral do solo com diferentes granulometrias (areia e argila) e teores de CO utilizando sensores de laboratório e satélite na região do MIR, especificamente na faixa do infravermelho termal (TIR). O estudo teve uma avaliação qualitativa e quantitativa da argila, CO e das frações de areia (fina e grossa). A área de estudo está localizada na região de Piracicaba, São Paulo, Brasil. Foram coletadas 150 amostras de solo a uma profundidade de 0-20 cm. A textura do solo foi determinada pelo método da pipeta e a porcentagem de CO via combustão seca. Dados espectrais em refletância e emissividade (ε) foram adquiridos com o sensor Fourier Transform Infrared (FT-IR) Alpha (Bruker optics Corporation). Uma imagem \"ASTER_05\" foi adquirida em 15 de julho de 2017 em valores de ε. As amostras foram separadas por classes texturais e o comportamento espectral no TIR foi descrito. Os dados obtidos pelo sensor de laboratório foram reamostrados para as bandas do sensor de satélite. O comportamento entre os espectros de ambos sensores foi semelhante e teve correlação significativa com os atributos estudados, principalmente para areia. Para os modelos de regressão por mínimos quadrados parciais (PLSR), foram utilizadas seis estratégias (MIR, MIR_ASTER, ASTER, Termal, Termal IDC e MIR IDC) que consistiram no uso de todas as bandas de sensores, ou pela seleção das mesmas que apresentaram as correlações mais significativas com cada um dos atributos. Os modelos apresentaram um bom desempenho na predição de todos os atributos usando o MIR inteiro. No TIR, o modelo para areia total e para as frações fina e grossa foi bom. No caso dos modelos criados com os dados do sensor ASTER, não foram tão promissores quanto os de laboratório. O uso de bandas específicas ajudou a estimar alguns atributos no MIR e no TIR, aumentando o desempenho preditivo melhorando a validação dos modelos. Portanto, a discriminação dos atributos do solo com sensores de satélite pode ser melhorada com a identificação de bandas específicas, como observado nos resultados com sensores de laboratório. / Soil texture and organic carbon (OC) content influence its spectral response. The study of these attributes is relevant for the preservation and proper management of land in pursuit of a sustainable agriculture. Laboratory and satellite sensors have been applied as a useful tool for studying soil attributes, but their analysis with these sensors has mainly focused on the visible (Vis), near infrared (NIR) and shortwave infrared (SWIR) regions of the electromagnetic spectrum, with few studies in the Medium Infrared (MIR). The objective of this study was to identify the spectral pattern of soils with different granulometry (sand and clay) and OC content using laboratory and satellite sensors in the MIR region, specifically in the Thermal Infrared (TIR) range. This study had qualitative and quantitative analyses of clay, OC and sand fractions (fine and coarse). The study area is located in the region of Piracicaba, São Paulo, Brazil. 150 soil samples were collected at a depth of 0-20 cm. Soil texture was determined by the pipette method and the percentage of OC via dry combustion. Reflectance and emissivity (ε) spectral data were obtained with the Fourier Transform Infrared (FT-IR) Alpha sensor (Bruker Optics Corporation). An image \"ASTER_05\" from July 15, 2017 was acquired with values of ε. Samples were separated by textural classes and the spectral behavior in the TIR region was described. The data obtained by the laboratory sensor were resampled to the satellite sensor bands. The behavior between spectra of both sensors was similar and had significant correlation with the studied attributes, mainly sand. For the partial least squares regression (PLSR) models, six strategies were used (MIR, MIR_ASTER, ASTER, Thermal, Thermal IDC and MIR IDC), which consisted in the use of all sensors bands, or by the selection of bands that presented the most significant correlations with each one of the attributes. Models presented a good performance in the prediction of all attributes using the whole MIR. In the TIR, models for total sand content and for fine and coarse fractions were good. In the case of models created with ASTER sensor data, they were not as promising as those with laboratory data. The use of specific bands was useful in estimating some attributes in the MIR and TIR, improving the predictive performance and validation of models. Therefore, the discrimination of soil attributes with satellite sensors can be improved with the identification of specific bands, as observed in the results with laboratory sensors.
|
53 |
Efeitos de culturas de cobertura na qualidade física do solo sob plantio direto / Effects of cover crops on physical quality of soil under no-tillageAndrade, Rui da Silva 22 February 2008 (has links)
Submitted by Carla Ferreira (carlaferreira66@gmail.com) on 2014-07-30T15:25:52Z
No. of bitstreams: 2
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Efeitos_de_culturas_de_cobertura_na_qualidade_fisica_do_solo_sob_plantio_direto.PDF: 481433 bytes, checksum: 95bdb8ab9b60f7aec50abbdf26baae09 (MD5) / Made available in DSpace on 2014-07-30T15:25:52Z (GMT). No. of bitstreams: 2
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Efeitos_de_culturas_de_cobertura_na_qualidade_fisica_do_solo_sob_plantio_direto.PDF: 481433 bytes, checksum: 95bdb8ab9b60f7aec50abbdf26baae09 (MD5)
Previous issue date: 2008-02-22 / The objective of this study was to verify the suitability of S index in the diagnostic of physical quality of Cerrado soils and, based upon it, to determine the effect of cover crop mulches on physical quality of a Dystrophic Red Latosol (Oxisol) under no-tillage. A total of 2364 samples were selected from the soil data base of Embrapa Rice & Beans and Embrapa Cerrados, covering Cerrado soils from Mid-West, North, and Northeast regions of Brazil. Values of S index, defined as the slope of the soil water retention curve at its inflection point, obtained from these samples were correlated to soil bulk density, macroporosity, and total porosity, considering the following textural classes: very clayey, clayey, sandy clay, sandy clay loam, loam/sandy loam e loamy sand/sand. Based on review of literature, critical values were established for the physical attributes that
separated, according to the texture, soils with good and poor structural quality and, based upon they, critical values were established for the S index. In order to study the effect of cover crop
mulches on soil physical quality, an experiment was carried out under center pivot at Embrapa Rice & Beans, in Santo Antônio de Goiás, GO, in a randomized block design, with eight replications.
The treatments consisted of eight cover crops: Brachiaria brizantha; corn associated with B. brizantha; pigeon pea; millet; Panicum maximum; sorghum; Stylosanthes guianensis; and Crotalaria juncea. The first seven crops had been cultivated in summer season since December 2001 and C. juncea since November 2003. In the winter season, after cover crop desiccation, irrigated common bean crop was implemented under no-tillage. In February 2006, soil organic matter content, some soil physical attributes, and soil physical quality measured by S index were determined. This index was highly correlated to the physical attributes, showing to be an adequate indicator of physical quality of Cerrado soils. The limit value of S = 0.045 showed to be adequate to separate soils with good structure and soils with the tendency to be degraded, while values of S ≤ 0,025 indicate physically degraded soils. Cover crops, specially grasses, favored soil aggregation at surface layer. Soil cultivation modified its structure in comparison to native forest, increasing bulk density and reducing macroporosity and total porosity, and hence, reducing soil physical quality. Among the cover crops, pigeon pea, C. juncea, and corn associated with B. brizantha were those that maintained soil surface layer with good physical quality. / Os objetivos desse trabalho foram verificar a adequação do índice S no diagnóstico da
qualidade física de solos de Cerrado e, com base nele, determinar o efeito de culturas de cobertura na qualidade física de um Latossolo Vermelho distrófico sob plantio direto. Foram selecionadas, nos bancos de dados dos Laboratórios de Solo das Embrapa Arroz e Feijão e Embrapa Cerrados, 2364 amostras abrangendo solos sob Cerrado das regiões CO, N e NE do Brasil. Valores de índice S, definido como sendo a declividade da curva característica de retenção da água do solo em seu ponto de inflexão, foram correlacionados com a densidade do solo, macroporosidade e porosidade total, considerando as classes texturais: muito argilosa, argilosa, argilo-arenosa, franco-argiloarenosa, franco/franco-arenosa e areia-franca/arenosa. Foram buscados na literatura valores limites de atributos físicos que separavam, de acordo com a textura, solos com boa e pobre qualidade estrutural e, com base neles, estabelecido valores limites para o índice S. Para o estudo do efeito de
culturas de cobertura na qualidade física do solo, foi conduzido um experimento sob pivô central na Embrapa Arroz e Feijão, em Santo Antônio de Goiás, GO, no delineamento de blocos ao acaso, com oito repetições. Os tratamentos consistiram de oito culturas de cobertura: braquiária; milho consorciado com braquiária; guandu anão; milheto; mombaça; sorgo; estilosantes; e crotalária. As sete primeiras vêm sendo cultivadas no verão desde dezembro de 2001 e a crotalária a partir de novembro de 2003. No inverno de cada ano, após dessecação dessas culturas, foi implantado o
feijoeiro irrigado. Em fevereiro de 2006 foram determinados o conteúdo de matéria orgânica do solo, alguns atributos físicos, e a sua qualidade física por meio do índice S. Esse índice correlacionou-se altamente com os atributos físicos, mostrando ser um adequado indicador da qualidade física de solos de Cerrado. O valor limite de S = 0,045 mostrou-se adequado à divisão entre solos de boa qualidade estrutural e solos com tendência a se tornar degradados, enquanto valores de S ? 0,025 indicam solos degradados fisicamente. As culturas de cobertura, especialmente as gramíneas, favoreceram a agregação do solo na camada superficial. O cultivo do solo modificou a sua estrutura comparativamente à mata nativa, aumentando sua densidade e reduzindo a macroporosidade, porosidade total e, consequentemente, a sua qualidade física. Entre as culturas de cobertura, guandu, crotalária e milho consorciado com braquiária foram as que mantiveram a camada superficial do solo com boa qualidade física.
|
54 |
The influence of vine vigour and canopy ideotype on fruit composition and aroma of Sauvignon BlancSutherland, M. J. January 2009 (has links)
The influence of soil texture on canopy growth, vine yield, and fruit composition of Sauvignon blanc were assessed on a mature vineyard from the Rapaura area in Marlborough. The subject vines were mature Sauvignon blanc in a commercial vineyard trained to four cane VSP and planted with a north south orientation. Row and vine spacings were typical of the area at 3m x 1.8m. Four areas of different soil texture were identified using trunk circumference measurements, visual assessment of the surface soil and aerial photographs to identify changes in vine growth. Soil pits were excavated at a later date to determine root numbers and record the soil texture in the different areas. Two crop treatments were imposed on half of the plots at approximately 50% veraison: unthinned crop and 50% crop. A shading treatment was also imposed at 50% veraison where three sets of tagged shoots had bunches that were exposed to sunlight, bunches that had some natural shading from leaves or bunches that had paper bags fastened over each to provide a completely shaded environment. Vine vegetative vigour for each plot was assessed during the growing season using the Point Quadrat method and at pruning using bud counts and pruning weights. Thirty berry samples were collected from the 32 plots and analysed weekly for soluble solids and berry weight. Harvest of bunches from the tagged shoots occurred on two different dates with the first harvest picked when fruit from one soil and crop treatment had reached 21 °Brix. The second picking took place just before the commercial harvest, which coincided with last soil and crop treatment reaching 21 °Brix. Bunches from each tagged shoot were weighed, frozen and later analysed for soluble solids, pH, organic acids, and methoxypyrazines. Vines on very stony textured soils had small trunk circumferences with a high root density and yield to pruning weight ratio compared to those growing on deep silt soils. Vines on deep silt soils had more vigorous canopies with large shoots and a higher leaf layer number. The target soluble solids was reached first by the vines on the very stony plots despite the higher crop load with soil texture appearing to be a dominant factor by influencing the time of flowering. Cluster shading decreased soluble solids, consistent with other studies, whilst crop thinning resulted in an earlier harvest. This was contrary to popular opinion that crop thinning at veraison would have no impact on sugar accumulation. pH and organic acids were unaffected by shading or bunch thinning. Vines growing on deep silt soils had a significantly higher level of total acidity and malic acid than those on the stony soils. At harvest, methoxypyrazine levels were very low compared to previously reported figures for Marlborough, which may have been a result of sample preparation. IBMP was significantly higher on deep silt soils, however, with no impact from the shading or crop treatment. The findings are consistent with the hypothesis that IBMP synthesis may be increased by the number of leaves surrounding bunches (Roujou de Boubee, 2003). The results suggest that soil texture plays a dominant role in influencing Sauvignon blanc flavour and aroma and due consideration should be given to vineyard layout and site selection prior to new plantings taking place.
|
55 |
Freeze-Thaw Effects on Soils Treated for Water RepellencyFink, Dwayne H., Mitchell, Stanley T. 12 April 1975 (has links)
From the Proceedings of the 1975 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - April 11-12, 1975, Tempe, Arizona / Water can be supplied to many arid areas by harvesting the precipitation that falls on artificially prepared water-repellent soil catchments. The failure, in 1973, of wax-treated water harvesting catchment led to this study which indicates that the failure was due to swelling and shrinking of the treated soil which caused complete structural breakdown and loss of repellency. The laboratory freeze-thaw studies demonstrated that the smoother the plot, the less chance of freeze-thaw damage. Generally, coarser-textured soil can withstand freeze-thaw cycles better than finer-textured soils. Soil properties, other than texture, may also affect resistance to damage by freeze-thaw cycles. Increasing the repellent application rate may improve resistance to breakdown.
|
56 |
Multifaceted effects of competition and plant-soil feedbacks on Achillea millefolium grown in soil from a riparian meadow : Emil Karlsson - Umeå University - Thesis project - 60 hpKarlsson, Emil January 2021 (has links)
Competition between plant individuals and how plants alter soil properties are key processes which drive changes in plant communities over time. Estimating the relative importance of these processes and how they affect plant growth in different ecological contexts and communities is an active area of research. Furthermore, interdependencies between the two processes have been suggested to occur in many cases, but research in this area is also lacking. In this study, soil conditioned by common yarrow (Achillea millefolium) was collected from field plots and was then used in a growth chamber competition experiment, which controlled for plant-soil feedbacks. Measured soil properties such as soil pH, soil nitrogen, and soil texture were primarily used as background data in the experiment. Field parameters such as light availability, plant density, and grass to forbs ratio were used to predict optimal A. millefolium habitat in relation to other vascular plant species. The results indicate that A. millefolium was a weaker competitor than cornflower (Centaurea cyanus), while a positive plant-soil feedback effect was observed by A. millefolium grown in field soil. Intraspecific competition had a strong negative effect on A. millefolium growth when grown in non-conditioned soil, but not when grown in A. millefolium conditioned soil. Finally, competition and plant-soil feedbacks appeared to be additively affecting A. millefolium growth, meaning the plant-soil feedback effect did not have a disproportionate effect on competitive outcomes, or vice versa. The findings of this study can be of interest to conservationists or farmers who wish to predict how plant communities respond to plant competition and plant-soil feedbacks as processes.
|
57 |
Tillage, soil texture and mineralogy effects on selected soil properties on four soil types in Limpopo Province, South AfricaMagagula, Siyabonga Isaac 21 June 2020 (has links)
MSCAGR (Soil Science) / Department of Soil Science / The effects of tillage on soil structure and associated soil properties such as soil respiration may differ in different soils. The study determined the effects of tillage, soil texture and mineralogy in selected soil properties on different soil types. Soil samples were collected from four different sites in the Limpopo province, South Africa. The soils were classified as Glenrosa with sandy loam texture, Dundee with loamy sand, Hutton with clay, and Shortlands with clay. Glenrosa and Dundee were dominated by quartz, while Hutton and Shortlands with kaolinite. Soil samples were taken from the surface 0 – 20 cm under conventional tillage and no-till land. Soil organic matter, texture, and mineralogy were determined. The soils were wetted to activate the microorganisms and incubated for 70 days at 30℃ and soil respiration was determined using alkali trap method on a weekly basis. The study was conducted in triplicates and arranged in a completely randomized design. Data was subjected to analysis of variance using general linear model procedure of Minitab version 19. Means were compared using paired t-test at (p ≤ 0.05). The Pearson correlation coefficient (r) was used to measure the strength of linear dependence between variables. There was a significant difference in soil organic matter (p≤0.000) among all studied soils. The mean values of soil organic matter were 2.19% in Hutton, 2.0% in Shortlands, 0.54% in Glenrosa, and 0.43% in Dundee. Quartz had a strong negative linear relationship (r = -0.66) with soil organic matter while kaolinite had a strong positive linear relationship (r = 0.96). Soil respiration increased in soils dominated with quartz and decreased in soils dominated with kaolinite. The soil respiration increased by 18.95 g CO2 m-2 d-1 in conventional tillage and decreased by 13.88 g CO2 m-2 d-1 in no-tillage due to increased exposure of soil organic matter under conventional. It was concluded that less intensive tillage such as no-tillage reduces soil respiration. / NRF
|
58 |
Effects of Fire on Water Infiltration Rates in a Ponderosa Pine StandZwolinski, Malcolm J. 23 April 1971 (has links)
From the Proceedings of the 1971 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - April 22-23, 1971, Tempe, Arizona / The importance of pine forest as a timber and water producing area has led to intensive management, including protection from wildfire. This has resulted in dense stand growth with increased destructive fire potential and transpirational water loss. In Arizona, as in many areas, prescribed forest burning has been used to effectively reduce these fuel hazards. Some question has arisen about the possible side effects of such treatments, particularly air pollution and reduction of infiltration and water yield. In an effort to determine the effects on infiltration, plots receiving various treatments (control, light burn, heavy burn) were fitted with fusion pyrometers before burning, to measure soil surface temperatures during burning. After burning, infiltrometers were installed. Surface temperatures did not exceed 200 degrees f. For the light burns, and ranged over 350-500 degrees f. During heavy burns. Both heavy and light burns produced highly significant decreases in infiltration capacities after burning and the surface 2 inches showed increases in soil pH, carbon and total nitrogen percentages. Infiltration capacities returned to normal after overwintering and were attributed to frost action on soil texture and porosity. The soil chemical changes decreased slowly over 2 years. Soil water repellency also increased and the significance of this is discussed.
|
59 |
Hydrologic Effects of Soil Surface Micro-FloraFaust, William F. 23 April 1971 (has links)
From the Proceedings of the 1971 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - April 22-23, 1971, Tempe, Arizona / Previous studies have indicated that blue-green algae may affect runoff, infiltration and erosion at soil surfaces. Using soil plots upon which blue-green algae were grown under an artificial wetting regime, studies were made using simulated rainfall. A 30% clay content Pima soil and a contrasting 8% clay content river-bottom anthony soil were used. Scytonema hoffmanii and Microcoleus vaginatus grew on the pima soil while Schizothrix calcicola developed on the Anthony soil. The results showed that blue-green algal growths significantly reduced the amount of suspended soil material in runoff water as compared with bare soils. Differences in runoff suspended sediments were also related to differences in soil type and simulated rainfall intensity. An analysis of variance of the effects of these 3 factors and their interactions showed that the smaller differences in suspended sediment production on the Anthony soil due to the microvegetation treatment was verified by a highly significant soils-microvegetation interaction, probably because the finer pima soils wash away more easily without stabilizing microvegetation. Also, less vegetation seems to grow on the Anthony soil. Differences in runoff and infiltration volumes and in settleable sediment amounts were not detected.
|
60 |
Use and Abuse of Southwestern Rivers: The Desert FarmerAyres, J. E. 23 April 1971 (has links)
From the Proceedings of the 1971 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - April 22-23, 1971, Tempe, Arizona / The pre-Columbian Hohokam Indians occupied the major river drainages of central Arizona, and have been the subject of much intense archaeological research. Evidence indicates that the Hohokam began using river water for crop irrigation about 300 B.C., and modified and improved their irrigation systems over time, until the maximum extent of these systems was achieved about 900 a. D. Two types of water control seem to have been utilized: (1) the direct exploitation of rivers through the use of irrigation canals, (2) indirect use through controlled runoff within microdrainages at higher elevations before it reached the rivers. At first, probably only those parcels of land with optimal soils and drainage were used, but apparently population increases fostered by agriculture itself, combined with increasing social and political complexity, necessitated more and more exploitation of marginal lands. Eventually soil problems increased, imposing severe limitations on agriculture. These involved salt and alkali accumulation due to inadequate drainage, soil density and water logging. Additionally, the extension of cropping required the clearing of natural vegetation, which resulted in increased erosion and decreased available native food resources for periods when crops failed. The culture vanished completely about 1450 a. D., probably mainly because of their manner of river exploitation for irrigation. More recent archaeological studies are concentrating not only on river use but also on river abuse.
|
Page generated in 0.0618 seconds