• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 752
  • 84
  • 67
  • 62
  • 47
  • 19
  • 13
  • 13
  • 12
  • 10
  • 8
  • 8
  • 7
  • 6
  • 6
  • Tagged with
  • 1370
  • 1370
  • 266
  • 236
  • 217
  • 207
  • 192
  • 185
  • 184
  • 167
  • 156
  • 148
  • 130
  • 120
  • 118
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
641

Development of efficient, stable organic-inorganic hybrid solar cells

Jayan, Baby Reeja 18 November 2013 (has links)
Developing a fundamental understanding of photocurrent generation processes at organic-inorganic interfaces is critical for improving hybrid solar cell efficiency and stability. This dissertation explores processes at these interfaces by combining data from photovoltaic device performance tests with characterization experiments conducted directly on the device. The dissertation initially focuses on exploring how morphologically and chemically modifying the organic-inorganic interface, between poly(3-hexylthiophene) (P3HT) as the electron donating light absorbing polymer and titanium dioxide (TiO₂) as the electron acceptor, can result in stable and efficient hybrid solar cells. Given the heterogeneity which exists within bulk heterojunction devices, stable interfacial prototypes with well-defined interfaces between bilayers of TiO₂ and P3HT were developed, which demonstrate tunable efficiencies ranging from 0.01 to 1.6 %. Stability of these devices was improved by using Cu-based hole collecting electrodes. Efficiency values were tailored by changing TiO₂ morphology and by introducing sulfide layers like antimony trisulfide (Sb₂S₃) at the P3HT-TiO₂ interface. The simple bilayer device design developed in this dissertation provides an opportunity to study the precise role played by nanostructured TiO₂ surfaces and interfacial modifiers using a host of characterization techniques directly on a working device. Examples introduced in this dissertation include X-ray photoelectron spectroscopy (XPS) depth profiling analysis of metal-P3HT and P3HT-TiO₂ interfaces and Raman analysis of bonding between interface modifiers like Sb₂S₃ and P3HT. The incompatibility of TiO₂ with P3HT was significantly reduced by using P3HT derivatives with -COOH moieties at the extremity of a polymer chain. The role of functional groups like -COOH in interfacial charge separation phenomena was studied by comparing the photovoltaic behavior of these devices with those based on pristine P3HT. Finally, for hybrid solar cells discussed in this dissertation to become commercially viable, high temperature processing steps of the inorganic TiO₂ layer must be avoided. Accordingly, this dissertation demonstrates the novel use of electromagnetic radiation in the form of microwaves to catalyze growth of anatase TiO₂ thin films at temperatures as low as 150 °C, which is significantly lower than that used in conventional techniques. This low temperature process can be adapted to a variety of substrates and can produce patterned films. Accordingly, the ability to fabricate TiO₂ thin films by the microwave process at low temperatures is anticipated to have a significant impact in processing devices based on plastics. / text
642

Wide band-gap nanostructure based devices

Chen, Xinyi, 陈辛夷 January 2012 (has links)
Wide band gap based nanostructures have being attracting much research interest because of their promise for application in optoelectronic devices. Among those wide band gap semiconductors, gallium nitride (GaN) and zinc oxide (ZnO) are the most commonly studied and optoelectronic devices based on GaN and ZnO have been widely investigated. This thesis concentrates on the growth, optical and electrical properties of GaN and ZnO nanostructures, plus their application in solar cells and light emitting diodes (LEDs). GaN-nanowire based dye sensitized solar cells were studied. Different post-growth treatments such as annealing and coating with a TiOx shell were applied to enhance dye absorption. It was found that TiOx increased the dye absorption and the performance of the dye sensitized solar cell. ZnO nanorods were synthesized by vapor deposition and electrodeposition. Post-growth treatments such as annealing and hydrothermal processing were used to modify the defect chemistry and optical properties. LEDs based on GaN/ZnO heterojunctions were studied. The influence of ZnO seed layers on GaN/ZnO LEDs was investigated. GaN/ZnO LEDs based on ZnO nanorods with MgO and TiOx shells were also prepared in order to modify the LED performance. The coating condition of the shell was found to influence the current-voltage (I-V) characteristics and device performance. Moreover, high brightness LEDs based on GaN with InGaN multiple quantum wells were also fabricated. The origin of the emission from GaN/ZnO LEDs was studied using different kinds of GaN substrates. Direct metal contacts on bare GaN substrates were also employed to investigate the optical emission and electrical properties. It is found that the emission from the GaN/ZnO LEDs probably originated from the GaN substrate. GaN/ZnO LEDs with MgO as an interlayer were also fabricated. The MgO layer was expected to modify the band alignment between the GaN and the ZnO. It was shown that GaN/MgO/ZnO heterojunctions (using both ZnO nanorods and ZnO films) have quite different emission performance under forward bias compared to those that have no MgO interlayer. An emission peak was around 400 nm could originate from ZnO. Nitrogen doped ZnO nanorods on n-type GaN have been prepared by electrodeposition. Zinc nitrate and zinc acetate were used as ZnO precursors and NH4NO3 was used as a nitrogen precursor. Only the ZnO nanorods made using zinc nitrate showed obvious evidence of doping and coherent I-V characteristics. Cerium doped ZnO based LEDs were fabricated and showed an emission that depended on the cerium precursor that was employed. This indicates that the choice of precursor influences the growth, the materials properties and the optical properties of ZnO. / published_or_final_version / Physics / Doctoral / Doctor of Philosophy
643

FUNDAMENTAL STUDIES OF SURFACTANT TEMPLATED METAL OXIDE MATERIALS SYNTHESIS AND TRANSFORMATION FOR ADSORPTION AND ENERGY APPLICATIONS

Das, Saikat 01 January 2015 (has links)
This work addresses fundamental aspects of designing templates and curing conditions for the synthesis of mesoporous metal oxide thin films. The first section addresses selection of cationic-carbohydrate surfactant mixtures to synthesize templated silica thin films for selective adsorption of simple carbohydrates based on molecular imprinting. Nuclear magnetic resonance and fluorescence spectroscopy results suggest a novel structure for mixtures of alkyl glucopyranosides or xylopyranosides with cationic (trimethylammonium) surfactants. Despite thermodynamically favorable mixing, the carbohydrate headgroups in the mixed micelle adopt an inverted configuration with their headgroups in the micelle core, and therefore are inaccessible for molecular imprinting. This orientation occurs even when the alkyl tail length of the carbohydrate surfactant is greater than that of the cationic surfactant, but this limitation can be overcome by introducing a triazole linker to the carbohydrate surfactant. The next section addresses the effects of aging conditions on the structural and chemical evolution of surfactant templated silica thin films. The third section describes the synthesis of carbohydrate/cationic surfactant imprinted silica thin films with orthogonally oriented cylindrical pores by modifying the glass surface with a random copolymer. The last part of the dissertation addresses the effect of pore orientation on the transformation mechanism of block copolymer templated titania thin films during high temperature curing. Mesoporous titania thin films can be used for photochemical and solar cell applications, but doing so requires addressing the tradeoff between loss of mesostructural order and growth of crystallinity during thermal treatment. By using advanced x-ray scattering techniques it has been shown that the titania films with vertically oriented pores can better withstand the anisotropic stress that develops during thermal treatment compare to titania films with mixed pore orientation. For instance, films with parallel or mixed pores can only be heated at 400 °C for a brief time (~10 min) without loss of order, while orthogonally oriented films can be heated at 550 °C or greater for extended time periods (on the order of hours) without significant loss of long-range mesopore structure. Detailed kinetic modeling was applied to enable the comparison of activation energy for mesostructure loss in films as a function of pore orientation and thickness.
644

Optimization of material composition and processing parameters for hybrid organic-inorganic solar cells

Salpeter, Garrett Morgan 16 February 2011 (has links)
The widespread adoption of hybrid organic-inorganic solar cells has been delayed by low performance. Improving performance requires a firm understanding of how to optimize both material composition and processing parameters. In this thesis, we examine processing parameters that include solution composition, annealing temperature, and the rates of spin casting and evaporative coating. We also find that the optimal weight ratio for the active layer of a ZnO:P3HT solar cell is 40 wt. % ZnO. / text
645

Temperature and irradiance dependence of dye-sensitized solar cell performance

Peng, Edwin, 1989- 16 February 2011 (has links)
Dye-sensitized solar cells (DSSCs) are photoelectrochemical cells that offer efficient and potentially economical alternative to conventional solar electricity production technologies. DSSCs belong to the third generation of solar cells and offer several advantages over the solid-state junction solar cells. They utilize materials, such as titanium dioxide that are inexpensive and abundant relative to those used in conventional solar cells. Moreover, DSSCs can be fabricated with simple and scalable manufacturing processes. Finally, in DSSCs, photon absorption and charge-carrier transport are undertaken by different materials, namely molecular dyes and wide band gap semiconductors, respectively. Unlike conventional solar cells, no compromise is necessary between decreasing the band gap for visible light absorption and increasing the band gap to resist photocorrosion. For successful commercialization, a photovoltaic system incorporating DSSCs must operate reliably under a wide range of solar irradiance and operating temperatures. This experimental study reports the fabrication and characterization of the performance of a DSSC as a function of irradiance and operating temperature. The prototyped DSSCs had (i) nanocrystalline titanium(IV) dioxide, TiO₂, photoanode, (ii) platinum thin film cathode, and (iii) acetonitrile based liquid electrolyte. The photoanodes were sensitized with N-749 dye. The current-voltage characteristics of the DSSCs were measured at operating temperatures from 5 to 50° C and under 500, 1000, and 1500 W m⁻² irradiance. The open circuit voltage, V[subscript oc], decreased linearly with increasing temperature and had positive, logarithmic relation with irradiance. At temperatures lower than 15° C and 1500 W m⁻² irradiance, short circuit current density, J[subscript sc], was limited by the diffusion of I₃ in the electrolyte and increased with increasing temperature. At temperatures lower than 15° C and lower irradiance, J[subscript sc] increased with increasing temperature due to electron density limited recombination of electrons injected into the TiO₂ conduction band. At higher temperatures, the recombination was dominant over diffusion and J[scubscript sc] decreased with increasing temperature. Moreover, J[subscript sc] increased linearly with increasing irradiance. The DSSC photoconversion efficiency did not vary appreciably at temperatures lower than 15° C but decreased with increasing temperature. Finally, the DSSC efficiency increased with increasing irradiance. There was no indication of significant coupling effect of irradiance and temperature on DSSC efficiency. This study reports for the first time the coupling between irradiance and thermal effects on the operation of DSSCs. The results reported in this study can be used in recovering kinetic and transport properties that can be used in modeling and optimization of DSSCs. / text
646

Development of new experimental techniques for studying transport and recombination in organic and inorganic thin film solar cells

Lombardo, Christopher Joseph 06 July 2011 (has links)
For more than 20 years, scientists have studied solar cells made from organic semiconductors. Throughout this time, device structures have evolved from bilayer devices to bulk heterojunction (BHJ) devices and even though efficiencies are approaching 10%, scientists still know relatively little about the transport of charge carriers and recombination mechanisms in these materials. Novel structures, based on lateral BHJ solar cells, have proven to be versatile tools to study transport and recombination mechanisms. In addition, these structures can easily be employed by researchers and solar cell manufacturers to determine the quality and measure the improvement of their materials. For these studies, poly(3-hexylthiophene) (P3HT):[6,6]-phenyl C61-butyric acid methyl ester (PCBM) has been employed due to its wide use among researchers as well as potential for commercialization. DC photocurrent measurements as a function of device length have yielded the mobility-lifetime product and the generation rate of free carriers within these BHJ devices. In addition to these parameters, the recombination rate as a function of light intensity provides information about the mechanisms of recombination. For example, by measuring the recombination rate as a function of applied electric field and light intensity we have found that recombination is unimolecular in nature and shifts to bimolecular at increased electric field strengths. Additionally, the mobility-lifetime product, generation rate, and recombination mechanism have been studied as a function of applied electric field, illumination spectrum, illumination intensity, etc. This information has provided much insight on physics of the P3HT:PCBM material system which did not exist before these studies. / text
647

Organic optoelectronic devices based on platinum(II) complexes and polymers

Xiang, Haifeng. January 2005 (has links)
published_or_final_version / abstract / Electrical and Electronic Engineering / Doctoral / Doctor of Philosophy
648

Chemically deposited CdS-Cu(x)S solar cells

Jaber, Nasuh Kamel January 1979 (has links)
The physical properties of cadmium sulfide and zinc oxide thin films, deposited from aqueous solution, were investigated using electron and x-ray diffraction techniques. The conventional method and two new methods were used to deposit cadmium sulfide thin films. Moreover, a new method for the deposition of zinc oxide was devised. Experiments were conducted on the cadmium sulfide thin films in order to make their semiconducting properties favorable for use as solar cells. Cds-Cu(x)S solar cells were fabricated, and their I-V characteristic curves plotted, using an X-Y recorder. The photovoltaic effects in chemically deposited Cds films have been clearly demonstrated.
649

Μελέτη νανοδομημένου οξειδίου του ψευδαργύρου ως φωτοάνοδος σε φωτοηλεκτροχημικές διατάξεις

Μπελεκούκια, Μελτιανή 22 May 2015 (has links)
Στην παρούσα εργασία δοκιμάστηκαν καινοτόμα υλικά όπως το οξείδιο του ψευδαργύρου (ZnO) ως προς τις δυνατότητές τους να χρησιμοποιηθούν σε διατάξεις μετατροπής της ηλιακής ενέργειας σε ηλεκτρισμό. Η διάταξη η οποία χρησιμοποιήθηκε στην παρούσα μελέτη είναι μια φωτοηλεκτροχημική κυψελίδα, η δομή της οποίας περιλαμβάνει: (α) το ηλεκτρόδιο της ανόδου (φωτοάνοδος) το οποίο αποτελείται από έναν ημιαγωγό μεγάλου ενεργειακού χάσματος όπως το ZnO, (β) το ηλεκτρόδιο της καθόδου το οποίο φέρει τον ηλεκτροκαταλύτη και (γ) τον ηλεκτρολύτη ο οποίος φέρει το κατάλληλο οξειδοαναγωγικό ζεύγος. Καθώς το ηλιακό φως προσπίπτει στην κυψελίδα φωτόνια απορροφούνται από τα ημιαγώγιμα στρώματα. Αυτό έχει σαν αποτέλεσμα την απορρόφηση των φωτονίων από τα ηλεκτρόνια, τη διέγερση των ηλεκτρονίων αυτών στη ζώνη αγωγιμότητας, τη δημιουργία οπών στη ζώνη σθένους στη θέση των ηλεκτρονίων, και τελικά τη δημιουργία προυποθέσεων κυκλοφορίας των φορέων ανάμεσα στα υλικά με στόχο τη συλλογή τους εξωτερικά και την αξιοποίηση του παραγόμενου φωτορεύματος. Στην παρούσα εργασία κατασκευάστηκαν ηλεκτρόδια με φωτοάνοδο ZnO με τρεις διαφορετικές μεθόδους, προκειμένου να αξιοποιηθούν σε φωτοκυψέλες καυσίμου και σε ηλιακές κυψελίδες στην κατεύθυνση βελτιστοποίησης της απόδοσης τους. Τα ηλεκτρόδια της φωτοανόδου χαρακτηρίστηκαν με ηλεκτρονική μικρσοσκοπία σάρωσης (SEM). Το οξείδιο του ψευδαργύρου (ZnO) αν και είναι ένας αποτελεσματικός φωτοκαταλύτης με κατάλληλο ενεργειακό χάσμα, βαρύνεται με το μειονέκτημα της απορρόφησης μόνο της υπεριώδους ακτινοβολίας και έτσι στην παρούσα μελέτη έχουν γίνει προσπάθειες φωτοευαισθητοποίησής του με ημιαγωγούς μικρότερου ενεργειακού χάσματος, γνωστοί ως Quantum Dots (κβαντικές τελείες) και απορροφούν στο ορατό τμήμα της ακτινοβολίας. Τέλος ως ηλεκτροκαταλύτες στην κάθοδο χρησιμοποιήθηκαν Pt/C σε Carbon Cloth στις φωτοκυψέλες καυσίμου και Cu2S από ορείχαλκο στις ηλιακές κυψελίδες. / In the present thesis novel materials such as ZnO were tested for their potential use in devices that convert solar energy into electricity. The structure that was used in the present study was a photoelectrochemical cell which includes (a) the anode electrode which consists a wide gap semiconductor such as zinc oxide (b) the cathode (counter electrode) which is normally a noble metal with a large work function and (c) the electrolyte, which comprises a suitable redox couple. As sunlight falls on the cell, photons ar absorbed by the semiconductor layer. This results in the absorption of photons by the electrons, the excitation of these electrons in the conduction band, creating holes in the valence band and ultimately the creation of charge mobility conditions for the carriers between the combined materials with the purpose to collect them externally and to utilize the produced photocurrent. In the present study zinc oxide electrodes were synthesized with three different methods in the direction of the optimization of the performance of the photoelectrochemical cells. The prepared electrodes were characterized by Scanning electron microscope (SEM). Although nanostructured zinc oxide is a capable catalyst with suitable energy gap, it has the disadvantage of the absorption by only UVA light. Thus there have been efforts for its photo-activation through smaller energy band gap semiconductors, known as Quantum dots (QDs), that absorb in the visible part of solar spectrum. As cathode electrocatalysts, Pt/C in carbon cloth and Cu2S were tested in photofuel cells and solar cells respectively.
650

Nanowire and thin film amorphous silicon photovoltaic cells based on carbon nanotube electrodes

Zhou, Hang January 2011 (has links)
No description available.

Page generated in 0.048 seconds