• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 250
  • 117
  • 51
  • 39
  • 30
  • 10
  • 6
  • 5
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 627
  • 627
  • 260
  • 177
  • 163
  • 163
  • 123
  • 115
  • 113
  • 111
  • 109
  • 108
  • 102
  • 92
  • 78
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
371

Solid-phase glycoconjugate synthesis : on-resin analysis with gel-phase ¹9F NMR spectroscopy

Mogemark, Mickael January 2005 (has links)
An efficient and versatile non-destructive method to analyze the progress of solid-phase glycoconjugate synthesis with gel-phase 19F NMR spectroscopy is described. The method relies on use of fluorinated linkers and building blocks carrying fluorinated protective groups. Commercially available fluorinated reagents have been utilized to attach the protective groups. The influence of resin structures for seven commercial resins upon resolution of gel-phase 19F NMR spectra was investigated. Two different linkers for oligosaccharide synthesis were also developed and successfully employed in preparation of α-Gal trisaccharides and a n-pentenyl glycoside. Finally, reaction conditions for solid-phase peptide glycosylations were established.
372

Development of Field-adapted Analytical Methods for the Determination of New Antimalarial Drugs in Biological Fluids

Lindegårdh, Niklas January 2003 (has links)
This thesis deals with the development of analytical methods for the determination of new antimalarial drugs in biological fluids. The goal was to develop methods that facilitate clinical studies performed in the field, such as capillary blood sampling onto sampling paper. Methods for the determination of atovaquone (ATQ) in plasma, whole blood and capillary blood applied onto sampling paper were developed and validated. Automated solid-phase extraction (SPE) and liquid chromatography (LC) with UV absorbance detection was used to quantify ATQ. Venous blood contained higher levels of ATQ than capillary blood after a single dose of Malarone (ATQ + proguanil). Ion-pairing LC was used to separate amodiaquine (AQ), chloroquine (CQ) and their metabolites on a CN-column. A method for quantification of AQ, CQ and their metabolites in capillary blood applied onto sampling paper was developed and validated. Perchloric acid and acetonitrile were used to facilitate the extraction of the analytes from the sampling paper. The liquid extract was further cleaned by SPE. Methods for the determination of piperaquine (PQ) in plasma and whole blood using SPE and LC were developed and validated. Addition of trichloroacetic acid (TCA) to the samples prior to injection into the LC-system significantly enhanced the efficiency for the PQ peak. Serum and whole blood contained higher levels (about 300 nM) of PQ than plasma (about 200 nM) after a single oral dose of 340 mg PQ. This indicates that PQ may be taken up in the leucocytes and thrombocytes.
373

Antigens derived from the mucin MUC1 : Solution and solid-phase synthesis of saccharides, peptides and glycopeptides

Pudelko, Maciej January 2008 (has links)
Mucin is a term used to describe a large family of heavily glycosylated proteins which are present on the surfaces of secretory epithelial cells and are overexpressed by many carcinomas. Membrane-bound mucin MUC1 is of special interest. Its backbone consists of repeating units of twenty amino acids with five potential glycosylation sites. These sites are expanded to structures like the T (Galβ(1->3)GalNAcα-Ser/Thr) and Tn (GalNAcα-Ser/Thr) antigens by the action of various glycosyltransferases. In different types of carcinomas these epitopes are being terminated by sialic acid residues to form among others: 2,3-sialyl-T and sialyl-Tn structures due to the elevated levels of different sialyltransferases. Solid-phase synthesis of the selected antigens derived from the mucin MUC1 has been developed and optimized. A chemoenzymatic approach has been used to effectively prepare 2,3-sialyl-T and 2,6-sialyl-Tn glycopeptides. The formation of intramolecular sialic acid lactones in presence of acetic acid was investigated. The stability of lactones formed from 2,3-sialyl-T towards water was studied using NMR spectroscopy and it appeared that 1''->2' lactone displayed remarkable strength to hydrolysis and it was suggested as a candidate for cancer vaccine. Gel-phase 19F NMR spectroscopy is known to be a very good tool to characterize resin-bound products using fluorinated protecting groups and linker molecules. The hydrophobic peptide LLLLTVLTV, which is a fragment from the MUC1 signal sequence, was prepared using solid-phase synthesis according to a modified Fmoc protocol with more active coupling reagent, stronger base, and the isopropylidene dipeptide Fmoc-Leu-Thr-(ΨMe,Mepro)-OH. Gel-phase 19F NMR spectroscopy was used to evaluate peptide chain aggregation and coupling and deprotection efficiency. A carbamate linker strategy proved to be effective in solid-phase synthesis of serine-based neoglycolipids with terminal amino functionality. Neoglycolipids were covalently bound to secondary amines in microtiter plates using squaric acid ester methodology. These arrays have potential to study the interactions between carbohydrates and e.g. proteins and microbes. The new fluorinated α-amino protective group [1-(4-(4-fluorophenyl)-2,6-dioxocyclohexylidene)ethyl] Fde was developed. This group is cleaved with hydrazine in DMF solution. By using amino acids protected with this group, it was possible to quantify the efficiency of peptide coupling using gel-phase 19F NMR spectroscopy.
374

Strategies for facilitated protein recovery after recombinant production in Escherichia coli

Hedhammar, My January 2005 (has links)
The successful genomic era has resulted in a great demand for efficient production and purification of proteins. The main objective of the work described in this thesis was to develop methods to facilitate recovery of target proteins after recombinant production in Escherichia coli. A positively charged purification tag, Zbasic, has previously been constructed by protein design of a compact three-helix bundle domain, Z. The charged domain was investigated for general use as a fusion partner. All target proteins investigated could be selectively captured by ion-exchange chromatography under conditions excluding adsorption of the majority of Escherichia coli host proteins. A single cation-exchange chromatography step at physiological pH was sufficient to provide Zbasic fusion proteins of high purity close to homogeneity. Moreover, efficient isolation directly from unclarified Escherichia coli homogenates could also be accomplished using an expanded bed mode. Since the intended use of a recombinant protein sometimes requires removal of the purification tag, a strategy for efficient release of the Zbasic moiety using an immobilised protease was developed. The protease columns were reusable without any measurable decrease in activity. Moreover, subsequent removal of the released tag, Zbasic, was effected by adsorption to a second cation-exchanger. Using a similar strategy, a purification tag with a negatively charged surface, denoted Zacid, was constructed and thoroughly characterised. Contrary to Zbasic, the negatively charged Zacid was highly unstructured in a low conductivity environment. Despite this, all Zacid fusion proteins investigated could be efficiently purified from whole cell lysates using anion-exchange chromatography Synthesis of polypeptides occurs readily in Escherichia coli providing large amounts of protein in cells of this type, albeit often one finds the recombinant proteins sequestered in inclusion bodies. Therefore, a high throughput method for screening of protein expression was developed. Levels of both soluble and precipitated protein could simultaneously be assessed in vivo by the use of a flow cytometer. The positively charged domain, Zbasic, was shown also to be selective under denaturing conditions, providing the possibility to purify proteins solubilised from inclusion bodies. Finally, a flexible process for solid-phase refolding was developed, using Zbasic as a reversible linker to the cation-exchanger resin. / QC 20101020
375

Ungesättigte Dithioetherliganden : selektive Extraktionsmittel für die Gewinnung von Palladium(II) aus Sekundärrohstoffen / Unsaturated dithioether ligands : selective extractants for the recovery of Palladium(II) from secondary sources

Traeger, Juliane January 2012 (has links)
Die Entwicklung neuer Verfahren für die Rückführung von Palladium aus Altmaterialien, wie gebrauchten Autoabgaskatalysatoren, in den Stoffstromkreislauf ist sowohl aus ökologischer als auch ökonomischer Sicht erstrebenswert. In dieser Arbeit wurden neue Flüssig-Flüssig- und Fest-Flüssig-Extraktionsmittel entwickelt, mit denen Palladium(II) aus einer oxidierenden, salzsauren Laugungslösung, die neben Palladium auch Platin und Rhodium sowie zahlreiche unedle Metalle enthält, zurückgewonnen werden kann. Die neuen Extraktionsmittel ungesättigte monomere 1,2-Dithioether und oligomere Ligandenmischungen mit vicinalen Dithioether-Einheiten – sind im Gegensatz zu vielen in der Literatur aufgeführten Extraktionsmitteln hochselektiv. Aufgrund ihrer geometrischen und elektronischen Präorganisation bilden sie mit Palladium(II) stabile quadratisch-planare Chelatkomplexe. Für die Entwicklung des Flüssig-Flüssig-Extraktionsmittels wurde eine Reihe von ungesättigten 1,2-Dithioetherliganden dargestellt, welche auf einer starren 1,2-Dithioethen-Einheit, die in ein variierendes elektronenziehendes Grundgerüst eingebettet ist, basieren und polare Seitenketten besitzen. Neben der Bestimmung der Kristallstrukturen der Liganden und ihrer Palladiumdichlorid-Komplexe wurden die elektro- und photochemischen Eigenschaften, die Komplexstabilität und das Verhalten in Lösung untersucht. In Flüssig-Flüssig-Extraktionsuntersuchungen konnte gezeigt werden, dass einige der neuen Liganden industriell genutzten Extraktionsmitteln durch eine schnellere Einstellung des Extraktionsgleichgewichts überlegen sind. Anhand von Kriterien, die für eine industrielle Nutzbarkeit entscheidend sind, wie: guter Oxidationsbeständigkeit, einer hohen Extraktionsausbeute (auch bei hohen Salzsäurekonzentrationen der Speiselösung), schneller Extraktionskinetik und einer hohen Selektivität für Palladium(II) wurde aus der Reihe der sechs Liganden ein geeignetes Flüssig-Flüssig-Extraktionsmittel ausgewählt: 1,2-Bis(2-methoxyethylthio)benzen. Mit diesem wurde ein praxisnahes Flüssig-Flüssig-Extraktionssystem entwickelt. Nach der schrittweisen Adaption der wässrigen Phase von einer Modelllösung hin zu der oxidierenden, salzsauren Laugungslösung erfolgte die Auswahl eines geeigneten großtechnisch, einsetzbaren Lösemittels (1,2-Dichlorbenzen) und eines effizienten Reextraktionsmittels (0,5 M Thioharnstoff in 0,1 M HCl). Die hohe Palladium(II)-Selektivität dieses Flüssig-Flüssig-Extraktionssystems konnte verifiziert und seine Wiederverwendbarkeit und Praxistauglichkeit unter Beweis gestellt werden. Weiterhin wurde gezeigt, dass sich beim Kontakt mit oxidierenden Medien aus dem Dithioether 1,2-Bis(2-methoxyethylthio)benzen geringe Mengen des Thioethersulfoxids 1-(2-Methoxyethylsulfinyl)-2-(2-methoxyethylthio)benzen bilden. Dieses wird im sauren Milieu protoniert und beschleunigt die Extraktion wie ein Phasentransferkatalysator, ohne jedoch die Palladium(II)-Selektivität herabzusetzen. Die Kristallstruktur des Palladiumdichlorid-Komplexes des Tioethersulfoxids zeigt, dass der unprotonierte Ligand Palladium(II), analog zum Dithioether, über die chelatisierenden Schwefelatome koordiniert. Verschiedene Mischungen von Oligo(dithioether)-Liganden und der monomere Ligand 1,2-Bis(2-methoxyethylthio)benzen dienten als Extraktionsmittel für Fest-Flüssig-Extraktionsversuche mit SIRs (solvent impregnated resins) und wurden zu diesem Zweck auf hydrophilem Kieselgel und organophilem Amberlite® XAD 2 adsorbiert. Die Oligo(dithioether)-Liganden basieren auf 1,2-Dithiobenzen oder 1,2-Dithiomaleonitril-Einheiten, welche über Tris(oxyethylen)ethylen- oder Trimethylen-Brücken miteinander verknüpft sind. Mit Hilfe von Batch-Versuchen konnte gezeigt werden, dass sich strukturelle Unterschiede - wie die Art der chelatisierenden Einheit, die Art der verbrückenden Ketten und das Trägermaterial - auf die Extraktionsausbeuten, die Extraktionskinetik und die Beladungskapazität auswirken. Die kieselgelhaltigen SIRs stellen das Extraktionsgleichgewicht viel schneller ein als die Amberlite® XAD 2-haltigen. Jedoch bleiben die Extraktionsmittel auf Amberlite® XAD 2, im Gegensatz zu Kieselgel, dauerhaft haften. Im salzsauren Milieu sind die 1,2-Dithiobenzen-derivate besser als Extraktionsmittel geeignet als die 1,2-Dithiomaleonitrilderivate. In Säulenversuchen mit der oxidierenden, salzsauren Laugungslösung und wiederverwendbaren, mit 1,2-Dithiobenzenderivaten imprägnierten, Amberlite® XAD 2-haltigen SIRs zeigte sich, dass für die Realisierung hoher Beladungskapazitäten sehr geringe Pumpraten benötigt werden. Trotzdem konnte die gute Palladium(II)-Selektivität dieser Festphasenmaterialien demonstriert werden. Allerdings wurden in den Eluaten im Gegensatz zu den Eluaten, die aus Flüssig-Flüssig-Extraktion resultierten neben dem Palladium auch geringe Mengen an Platin, Aluminium, Eisen und Blei gefunden. / The development of new processes for the recovery of palladium from recycling materials like spent automotive catalysts is of economic and ecologic interest. In this thesis new solvent and solid phase extractants have been designed, which are suitable for the recovery of palladium(II) from an oxidising hydrochloric leach liquor that does not only additionally contain platinum and rhodium but also a number of base metals. In contrast to many extractants described in the literature these new extractants – unsaturated monomeric dithioethers as well as oligomeric mixtures of ligands with vicinal dithioether units – are highly selective for palladium(II). Due to their geometric and electronic preorganisation they form stable square-planar chelate complexes with palladium(II). For the development of the solvent extractant a series of unsaturated dithioethers, which are based on a rigid 1,2-dithioethene unit that is imbedded in an electron-withdrawing backbone, with polar end-groups has been synthesised. In addition to the determination of the crystal structures of the ligands and their dichloridopalladium complexes, the electro- and photochemical properties, the complex stabilities and the behaviour in solution have been investigated. Solvent extraction experiments showed the superiority of some of our ligands over conventionally used extractants in terms of their very fast reaction rates. Considering criteria that are essential for industrial utilisation like: robustness towards oxidation, achieving of high extraction yields (even at a high hydrochloric acid content of the leach liquor), fast extraction kinetics and a high selectivity for palladium(II), 1,2-bis(2-methoxyethylthio)benzene was selected as the extractant of choice. Building on this a solvent extraction system close to industrial practice was devised. After stepwise adaption of the aqueous phase from a model solution to the oxidising hydrochloric leach liquor, the selection of a diluent suitable for commercial operations (1,2-dichlorobenzene) and of an efficient stripping agent (0.5 M thiourea in 0.1 M HCl) has been accomplished. The high selectivity of that solvent extraction system for palladium(II) could be verified and its reusability and suitability for practical application have been proven. Further it was shown that small amounts of the thioether sulfoxide 1-[(2-methoxyethyl)sulfanyl]-2-[(2-methoxyethyl)sulfinyl]benzene form when the dithioether ligand 1,2-bis(2-methoxyethylthio)benzene gets in contact with oxidising media. Under acidic conditions this thioether sulfoxide gets protonated and accelerates the extraction like a phase transfer catalyst; without decreasing the selectivity for palladium(II). The molecular structure of the corresponding dichloridopalladium complex reveals that the nonprotonated ligand coordinates palladium(II) in a similar manner to the dithioether via the chelating sulfur atoms. Mixtures of oligo(dithioether) ligands and the monomeric 1,2-bis(2-methoxyethylthio)benzene have been adsorbed on silica gel and amberlite® XAD 2. These SIRs (solvent impregnated resins) have been used for solid phase extraction experiments. The oligo(dithioether) ligands are based on 1,2- dithiobenzene or 1,2-dithiomaleonitrile units, which are connected via tris(oxyethylene)ethylene or trimethylene chains. With the help of batch experiments it could be shown how structural differences, like the chelating unit, the kind of linking chain and the type of supporting material, impact the extraction yield, kinetics and loading capacity. The SIRs containing silica gel establish the extraction equilibrium much faster than those containing amberlite® XAD 2. On the other hand, the extractants permanently remain on amberlite® XAD 2, in contrast to silica gel. In a hydrochloric medium 1,2-dithiobenzene derivatives are better extractants than 1,2-dithiomaleonitrile derivatives. In column experiments with the oxidising hydrochloric leach liquor and reusable SIRs based on 1,2-dithiobenzene derivatives impregnated into amberlite® XAD 2, it appeared that for the implementation of high loading capacities very low flow rates are required. The selectivity for palladium(II) of these solid phase extractants could be demonstrated, although the eluates, in contrast to the eluates gained from the solvent extraction experiments, contained not only palladium but also small amounts of platinum, aluminium, iron and lead.
376

Quantification of resin acids, fatty acids and sterols in process and waste water from forest industry / Kvantifiering av hartssyror, fettsyror och steroler i process och avloppsvatten från skogsindustrin

Ismailov, Taner January 2013 (has links)
This work focuses on wood extractives in effluents from the CTMP plant at Skoghall Mill. Pulp and paper industry effluents contain mostly natural compounds which are part of the trees. They are toxic to aquatic life but harmless in nature, as they are present in low concentrations. Processing tons of wood, such as in a pulp mill, strongly increases the concentrations of the toxic compounds (Ali, M. and Sreekrishnan, T., 2001) which have to be treated before transferring to the aquatic environment.Extractives can be found in different forms, as micelles soluble in water, unprocessed in fibers or absorbed on the surface of fibers. It is important to know in which forms extractives are mostly present in the effluent, so that they can be treated more efficiently. It is desired to have extractives absorbed on the fibers and fibrils present in the waste water, so they can be separated from the water and treated separately, e.g. burned for energy recovery. Dissolved extractives complicate the oxygen transfer in an aerated biological treatment step with their surface active properties (Sandberg, 2012).The aim of this study is quantification of extractives on the fibers suspended in the waste water and extractives dissolved in the water. The distribution between the two forms is an important input when designing future effluent treatment. Wood extractives itself are a wide group with different compounds. This work focuses on the main groups present in waste water: resin acids, free and esterified fatty acids and, free and esterified sterols. These groups are analyzed in different process waters and waste water before the waste water treatment plant. The measured concentrations of extractives were as expected, higher in process and effluent waters, lower in white water. Most of the extract was dissolved in the water and unfortunately fiber samples contained very low concentration from the total extract in the samples.
377

New Calibration Approaches in Solid Phase Microextraction for On-Site Analysis

Chen, Yong January 2004 (has links)
Calibration methods for quantitative on-site sampling using solid phase microextraction (SPME) were developed based on diffusion mass transfer theory. This was investigated using adsorptive polydimethylsiloxane/divinylbenzene (PDMS/DVB) and Carboxen/polydimethylsiloxane (CAR/PDMS) SPME fiber coatings with volatile aromatic hydrocarbons (BTEX: benzene, toluene, ethylbenzene, and o-xylene) as test analytes. Parameters that affected the extraction process (sampling time, analyte concentration, water velocity, and temperature) were investigated. Very short sampling times (10-300 s) and sorbents with a strong affinity and large capacity were used to ensure a 'zero sink' effect calibrate process. It was found that mass uptake of analyte changed linearly with concentration. Increase of water velocity increased mass uptake, though the increase is not linear. Temperature did not affect mass uptake significantly under typical field sampling conditions. To further describe rapid SPME analysis of aqueous samples, a new model translated from heat transfer to a circular cylinder in cross flow was used. An empirical correlation to this model was used to predict the mass transfer coefficient. Findings indicated that the predicted mass uptake compared well with experimental mass uptake. The new model also predicted rapid air sampling accurately. To further integrate the sampling and analysis processes, especially for on-site or <i>in-vivo</i> investigations where the composition of the sample matrix is very complicated and/or agitation of the sample matrix is variable or unknown, a new approach for calibration was developed. This involved the loading internal standards onto the extraction fiber prior to the extraction step. During sampling, the standard partially desorbs into the sample matrix and the rate at which this process occurs, was for calibration. The kinetics of the absorption/desorption was investigated, and the isotropy of the two processes was demonstrated, thus validating this approach for calibration. A modified SPME device was used as a passive sampler to determine the time-weighted average (TWA) concentration of volatile organic compounds (VOCs) in air. The sampler collects the VOCs by the mechanism of molecular diffusion and sorption on to a coated fiber as collection medium. This process was shown to be described by Fick's first law of diffusion, whereby the amount of analyte accumulated over time enable measurement of the TWA concentration to which the sampler was exposed. TWA passive sampling with a SPME device was shown to be almost independent of face velocity, and to be more tolerant of high and low analyte concentrations and long and short sampling times, because of the ease with which the diffusional path length could be changed. Environmental conditions (temperature, pressure, relative humidity, and ozone) had little or no effect on sampling rate. When the SPME device was tested in the field and the results compared with those from National Institute of Occupational Health and Safety (NIOSH) method 1501 good agreement was obtained. To facilitate the use of SPME for field sampling, a new field sampler was designed and tested. The sampler was versatile and user-friendly. The SPME fiber can be positioned precisely inside the needle for TWA sampling, or exposed completely outside the needle for rapid sampling. The needle is protected within a shield at all times hereby eliminating the risk of operator injury and fiber damage. A replaceable Teflon cap is used to seal the needle to preserve sample integrity. Factors that affect the preservation of sample integrity (sorbent efficiency, temperature, and sealing materials) were studied. The use of a highly efficient sorbent is recommended as the first choice for the preservation of sample integrity. Teflon was a good material for sealing the fiber needle, had little memory effect, and could be used repeatedly. To address adsorption of high boiling point compounds on fiber needles, several kinds of deactivated needles were evaluated. RSC-2 blue fiber needles were the more effective. A preliminary field sampling investigation demonstrated the validity of the new SPME device for field applications.
378

New Calibration Approaches in Solid Phase Microextraction for On-Site Analysis

Chen, Yong January 2004 (has links)
Calibration methods for quantitative on-site sampling using solid phase microextraction (SPME) were developed based on diffusion mass transfer theory. This was investigated using adsorptive polydimethylsiloxane/divinylbenzene (PDMS/DVB) and Carboxen/polydimethylsiloxane (CAR/PDMS) SPME fiber coatings with volatile aromatic hydrocarbons (BTEX: benzene, toluene, ethylbenzene, and o-xylene) as test analytes. Parameters that affected the extraction process (sampling time, analyte concentration, water velocity, and temperature) were investigated. Very short sampling times (10-300 s) and sorbents with a strong affinity and large capacity were used to ensure a 'zero sink' effect calibrate process. It was found that mass uptake of analyte changed linearly with concentration. Increase of water velocity increased mass uptake, though the increase is not linear. Temperature did not affect mass uptake significantly under typical field sampling conditions. To further describe rapid SPME analysis of aqueous samples, a new model translated from heat transfer to a circular cylinder in cross flow was used. An empirical correlation to this model was used to predict the mass transfer coefficient. Findings indicated that the predicted mass uptake compared well with experimental mass uptake. The new model also predicted rapid air sampling accurately. To further integrate the sampling and analysis processes, especially for on-site or <i>in-vivo</i> investigations where the composition of the sample matrix is very complicated and/or agitation of the sample matrix is variable or unknown, a new approach for calibration was developed. This involved the loading internal standards onto the extraction fiber prior to the extraction step. During sampling, the standard partially desorbs into the sample matrix and the rate at which this process occurs, was for calibration. The kinetics of the absorption/desorption was investigated, and the isotropy of the two processes was demonstrated, thus validating this approach for calibration. A modified SPME device was used as a passive sampler to determine the time-weighted average (TWA) concentration of volatile organic compounds (VOCs) in air. The sampler collects the VOCs by the mechanism of molecular diffusion and sorption on to a coated fiber as collection medium. This process was shown to be described by Fick's first law of diffusion, whereby the amount of analyte accumulated over time enable measurement of the TWA concentration to which the sampler was exposed. TWA passive sampling with a SPME device was shown to be almost independent of face velocity, and to be more tolerant of high and low analyte concentrations and long and short sampling times, because of the ease with which the diffusional path length could be changed. Environmental conditions (temperature, pressure, relative humidity, and ozone) had little or no effect on sampling rate. When the SPME device was tested in the field and the results compared with those from National Institute of Occupational Health and Safety (NIOSH) method 1501 good agreement was obtained. To facilitate the use of SPME for field sampling, a new field sampler was designed and tested. The sampler was versatile and user-friendly. The SPME fiber can be positioned precisely inside the needle for TWA sampling, or exposed completely outside the needle for rapid sampling. The needle is protected within a shield at all times hereby eliminating the risk of operator injury and fiber damage. A replaceable Teflon cap is used to seal the needle to preserve sample integrity. Factors that affect the preservation of sample integrity (sorbent efficiency, temperature, and sealing materials) were studied. The use of a highly efficient sorbent is recommended as the first choice for the preservation of sample integrity. Teflon was a good material for sealing the fiber needle, had little memory effect, and could be used repeatedly. To address adsorption of high boiling point compounds on fiber needles, several kinds of deactivated needles were evaluated. RSC-2 blue fiber needles were the more effective. A preliminary field sampling investigation demonstrated the validity of the new SPME device for field applications.
379

Molecularly Imprinted Polymers: Towards a Rational Understanding of Biomimetic Materials

Molinelli, Alexandra Lidia 22 November 2004 (has links)
The research described in this thesis contributes to the development of new strategies facilitating advanced understanding of the fundamental principles governing selective recognition of molecularly imprinted polymers (MIPs) at a molecular level for the rational optimization of biomimetic materials. The nature of non-covalent interactions involved in the templating process of molecularly imprinted polymers based on the self-assembly approach were investigated with a variety of analytical techniques addressing molecular level interactions. For this purpose, the concerted application of IR and 1H-NMR spectroscopy enabled studying the complexation of the template molecules 2,4-dichlorophenoxyacetic acid, quercetin, and o-, m-, and p-nitrophenol with a variety of functional monomers in the pre-polymerization solution by systematically varying the ratio of the involved components. In aqueous and non protic porogenic solvents, information on the interaction types, thermodynamics, and complex stoichiometry was applied toward predicting the optimum imprinting building blocks and ratios. Molecular dynamics simulations of 2,4-dichlorophenoxyacetic acid and its interactions with the functional monomer 4-vinylpyridine in aqueous and aprotic explicit solvent allowed demonstrating the fundamental potential of computer MD simulations for predicting optimized pre-polymerization ratios and the involved interaction types. The obtained results clearly demonstrate that the application of rapid IR/NMR pre-screening methods in combination with molecular modeling strategies is a promising strategy towards optimized imprinting protocols in lieu of the conventionally applied labor intensive and time-consuming trial-and-error approach. Furthermore, HPLC characterization of the produced MIPs compared to control polymers enabled a systematic approach to imprinting based on advanced understanding of the factors governing the formation of high-affinity binding sites during the polymerization. In addition, the importance of the combination of size, shape, and molecular functionalities for the selective recognition properties of MIPs was investigated. MIPs for the mycotoxins deoxynivalenol and zearalenone and for the antioxidant quercetin were applied as separation materials for advanced sample preparation in beverage analysis. The obtained results demonstrated the potential of MIPs for rapid one-step sample clean-up and pre-concentration from beverages such as wine and beer.
380

The Study of Binding Behaviors between Dissolved Organic Matter and Polycyclic Aromatic Compounds

Hsieh, Ping-Chieh 23 June 2011 (has links)
Polycyclic aromatic hydrocarbons (PAHs) and nitrogen-containing polycyclic aromatic compound (N-PAC) are widespread toxic pollutants in environments. The fate of PAHs and N-PACs are of great concern because some of these compounds were identified as caricinogenic, mutagenic and teratogenic compounds. As described in literature, dissolved organic matter (DOM) is an important factor in control of their fate; however, the binding behaviors between these compounds and DOM are still not fully understood. The binding constants (KDOC) between humic substances and one selected N-PAC, benzo[h]quinoline, were measured at varying pH levels using fluorescence quenching (FQ) method. As fluorescence characteristics of benzo[h]quinoline change with pH, determination required two optimum sets of excitation and emission wavelength pairs. A simple mixing model was proposed and used to eliminate the inherent fluorescence interference between benzo[h]quinoline (BQ) and its protonated form, benzo[h]quinolinium (BQH+), and to deduce Kmix which represents the overall binding as the sum of that for the individual analogs. The characteristics of humic substances, especially their hydrophobicity and aromaticity, established by principal components analysis of structural and elemental compositions, were the main determinants of their binding affinity with both benzo[h]quinoline and benzo[h]quinolinium (KBQ and KBQH+) across a range of pH values. Hydrophobic interaction is likely to control the binding between humic substance and benzo[h]quinoline and benzo[h]quinolinium, in lower and higher pH ranges (pH<3, pH>6). In contrast, cation exchange seems to control on the binding affinity of benzo[h]quinolinium in the middle range of pH. Determination of PAH concentration is quite essential for investigating the fate of PAHs in environments. Microwave-assisted headspace solid-phase microextraction (MA-HS-SPME) with a polydimethylsiloxane/divinylbenzene (PDMS/DVB) fiber was applied as a single step prior to determination of PAH concentrations in water using GC-MS. To optimize the extraction efficiency of PAHs by MA-HS-SPME, the influence of various parameters, including temperature, duration of thermal desorption, microwave irradiation power and duration, and the temperature of the circulating cooling water system, was studied. The proposed method was demonstrated applicable to environmental water samples. In addition, DOM matrix effect did not influence the determination and extraction efficiency of PAHs. Although the proposed simple mixing model can eliminate the fluorescent interference of hydrophobic organic compounds with acid-base pair forms, it is still limited in using for correcting the KDOC measurement of more than two fluorescent compounds simultaneously. A new alternative protocol, complexation-flocculation combined with MA-HS-SPME/GC-MS method, was proposed to determine the binding constants of seleted PAHs to humic substances. The results obtained are comparable with KDOC data reported in literatures. CF-MA-HS-SPME/GC-MS provides some advantages over other methods, such as applicable not limited to fluorescent compounds, faster in determination and capable in measuring varieties of compounds simultaneously.

Page generated in 0.1326 seconds