Spelling suggestions: "subject:"solid phase"" "subject:"solid chase""
451 |
Cílená analýza větvených esterů mastných kyselin pomocí LC/MS / Targeted analysis of branched-chain faty acid esters by LC/MSBřezinová, Marie January 2016 (has links)
Lipidomics as a part of metabolomics is a fast-growing area of research due to the improvement in analytical techniques. This master thesis is focused on lipid extraction techniques optimization, using liquid liquid extraction and solid phase extraction as pre-separation methods and ultra performance liquid chromatography coupled with mass spectrometry for extraction and subsequent identification of branched-chain fatty acid esters (FAHFA - branched-chain Fatty Acid esters of Hydroxy Fatty Acids). This newly discovered class of lipid molecules is associated with insulin secretion, which could improve whole body and local glucose metabolism, providing potential for diabetes 2 type treatment. Solid phase extraction of biological samples was optimized on columns regarding to sorbent composition using reversed phase columns with modified styrene divinylbenzene polymer or octadecyl-bonded polymer and normal phase columns packed with silica gel. Column Strata SI-1 Silica was the most effective for FAHFA separation from biological samples. Chromatographic separation of FAHFA was performed on UPLC Ultimate 3000 RSLC equipped with Kinetex C18 1,7 µm, 2,1 x 150 mm column using gradient program. UPLC was coupled to QTRAP 5500/SelexION, a hybrid, triple quadrupole, linear ion trap mass spectrometer equipped...
|
452 |
Nový přístup k elektroanalýze primárních žlučových kyselin a příbuzných steroidů / A new approach to the electroanalysis of primary bile acids and related steroidsKlouda, Jan January 2020 (has links)
In this doctoral thesis, a novel method for the determination of primary bile acids cholic acid and chenodeoxycholic acid is presented. Bile acids play various vital roles in the mammalian body. Moreover, their determination is extremely helpful in liver and biliary disease diagnosis and management. These saturated organic compounds lack strong chromophores and fluorophores in their structure, and thus are usually hard to detect in spectroscopy. For this reason, either instrumentally advanced but expensive methods, such as mass spectrometry, or less reliable enzymatic methods are commonly employed in bile acids quantitation. Hence, the demand for simple and reliable methods for their determination is strong. Bile acids are also known to be virtually inert for direct electrochemical oxidation. Herein, a simple method for their chemical activation for electrochemical oxidation on bare electrode materials was developed, optimized and applied to cholic acid and chenodeoxycholic acid determination. The activation is based on a dehydration reaction of a primary bile acid with 0.1 mol L-1 HClO4 in acetonitrile (water content 0.55%) that introduces double bond(s) into the originally fully saturated steroid core. This naturally increases the electron density in the structure, and thus allows electrochemical...
|
453 |
Určování hydraulických charakteristik jílových suspensí / Determination of hydraulic characteristcs of clay suspensionsPetrová, Markéta January 2010 (has links)
This thesis is focused on determining the hydromechanical characteristics of clay suspensions, permeability and compressibility, where is the effective stress, the concentration of suspension and is the permeability. Because the compressibility or permeability can't be measured directly, I use Darcian mechanics of two-phase systems to compute the characteristics I wanted from a well- measurable quantities, measured in appropriate experiments. Work has been solved with the support of the project : Hydromechanical characteristics of clay suspensions. The first part deals with a mineralogical characteristics fylosilicates, characterization of kaolin deposits in the Bohemian Massif, physical chemistry of colloidal systems, electric double layers and electro kinetic potential. Experimental section follows later, which proceed from the assumption that the same concentration of kaolin suspension and an identical colloidal state, exposed to the same pressure-temperature conditions, exhibit the same values of hydro mechanical characteristics such as their evolution in time can be described as a continuous function. As the model, I chose the coagulated kaolin suspension. Coagulation are achieved by adding weight percent of solids . Suspension settles in a vertical cylinder of high with an inner diameter of , which...
|
454 |
Poly (butylene succinate) and poly (butylene adipate) : quantitative determination of degradation products and application as PVC plasticizersLindström, Annika January 2005 (has links)
A solid phase extraction (SPE) method was developed for simultaneous extraction of dicarboxylic acids and diols formed during hydrolysis of poly(butylene succinate), PBS, and poly(butylene adipate), PBA. The developed SPE method and subsequent GC-MS analysis were used to extract, identify and quantify low molecular weight products migrating from linear and branched poly(butylene adipate) (PBA) and poly(butylene succinate) (PBS) during aging in aqueous media. The combination of SPE and GC-MS proved to be a sensitive tool, able to detect small differences in the degradation rate during early stages of hydrolysis before any significant differences were observed by weight loss and molecular weight measurements. The detected low molecular weight products included monomers i.e. adipic acid and 1,4-butanediol for the PBA polymers and succinic acid and 1,4-butanediol for PBS. Several dimers and trimers i.e. hydroxybutyl adipate, hydroxybutyl succinate, di(hydroxybutyl) adipate, di(hydroxybutyl) succinate and hydroxybutyl disuccinate were also detected. Best extraction efficiency for 1,4-butanediol and succinic acid was achieved with a hydroxylated polystyrene-divinylbenzene resin as solid phase. Linear range for the extracted analytes was 1-500 ng/ml for adipic acid and 2-500 ng/ml for 1,4-butanediol and succinic acid. Detection and quantification limits for all analytes were between 1-2 ng/ml (S/N=3) and 2-7 ng/ml (S/N=10) respectively. Relative standard deviations were between 3 % and 7 %. Comparison of measured weight loss and the amount of monomeric products showed that weight loss during early stages of hydrolysis was mainly caused by the release of water-soluble oligomers that on prolonged ageing were further hydrolyzed to monomeric species. Significant differences in degradation rate could be assigned to degree of branching, molecular weight, aging temperature and degradation medium. Linear and branched PBA was mixed with PVC in solution cast films to study the effects of molecular weight and branching on plasticizer efficiency. Used as polymeric plasticizer, PBA formed a semi-miscible two-phase system with PVC where the amorphous part exhibited one single glass transition temperature and the degree of polyester crystallinity was dependent on molecular weight, degree of branching and blend composition. Plasticizing efficiency was favored by higher degree of branching and a 40 weight-percent polyester composition. / QC 20101209
|
455 |
Development of headspace solid phase microextraction gas chromatography mass spectrometry method for analysis of volatile organic compounds in board samples : Correlation study between chromatographic data and flavor properties / Utveckling av fastfas mikroextraktion gaskromatografi masspektrometisk metod för analys av flyktiga organiska föreningar i kartongprover : Korrelationsstudie av kromatografisk data och smakegenskaperZethelius, Thea January 2021 (has links)
The purpose of this thesis work was to develop a headspace solid phase microextraction gas chromatography mass spectrometry (HS-SPME-GC-MS) method to detect volatile organic compounds (VOCs) in board samples and to statistically investigate potential correlation between chromatographic data and flavor data obtained from a trained panel. The developed method would hopefully serve as a complement to the already established routine analyses at Stora Enso and gain an increased understanding of which VOCs in the board influence its flavor properties. The impact of incubation time and adsorption time on the area under curve (AUC) was studied with a Design of Experiment screening using the software MODDE. The screening data showed a correlation between large AUC and low repeatability measured as relative standard deviation (RSD). The data was hard to fit to a model due to the large RSD values for the replicates, AUC for identified compounds as response gave an acceptable fit. The regression coefficients for the model showed that a longer adsorption time gave larger AUC, while incubation time had no significant impact on the response. Instead of following up the screening with an optimization, the focus was shifted to improving the repeatability of the method, i.e. lowering the RSD. The high RSD was believed to mainly be the result of leakage of analytes and unstable temperature during adsorption, preventing the system from reaching equilibrium. Different heating options and capping options for the vial was tested. Septum in crimp cap ensured a gas tight seal for the vial, giving lower RSD values and larger AUC compared to the other alternatives, showing that there was indeed a leakage. Using oil bath ensured stable temperature during the adsorption and detection of a larger number of VOCs but created a temperature gradient in the vial due to it not being fully submerged in the oil. Oil bath gave larger AUC, but still high RSD due to the temperature gradient making the method sensitive to variance in fiber depth in the vial. The final method was performed with 2 g of board sample in a 20 ml headspace vial sealed with a crimp cap with septa. The incubation and adsorption were performed with the vial immersed in a 90-degree oil bath. 20 min incubation time was chosen based on the time it took to get a stable temperature gradient in the vial, and 20 minutes adsorption time was chosen as a good compromise between large AUC and low RSD. Compared to Stora Ensos routine analysis, the developed SPME method gave chromatograms with an improved signal-to-noise ratio for the base line and several more peaks with larger AUC. For the board sample used during method development, the SPME-method identified 34 VOCs, while the routine analysis only identified 12. The developed method was applied on 11 archived board samples of the same quality that were selected based on their original flavor properties, to get a large diversity of samples. Flavor analysis was performed by letting a trained flavor panel describe the flavor based on intensity and character of the water that had individually been in indirect contact with one of the 11 board sample for 24 h. Potential correlation between chromatographic data obtained with the developed method and the flavor experience described by the flavor panelists was statistically investigated with the multivariate analysis software SIMCA. The correlation study showed that a combination of 12 VOCs with short retention time are most likely the main source of off-flavor which of 5 could only be identified with the developed SPME method. VOCs with long retention time did not contribute to an off-flavor and might have a masking effect on flavor given by other VOCS, however not confirmed in this study. Furthermore, the age of the board samples proved to be a good indicator for prediction of the flavor intensity, whereas the total AUC of the samples was not. Possible correlation between detected VOCs in the samples and flavor character given by the flavor panel were seen, however the variation in the data and the sample set were too small, preventing from making conclusions on individual VOCs impact on the flavor experience. The developed HS-SPME-GC-MS method would serve as a complement to the already established routine analyses at Stora Enso and has slightly increased the understanding of which VOCs in the board influence the flavor properties
|
456 |
Pressure-based clog detection in SPE-columnsJohansson, Elias January 2021 (has links)
The concept of integrated sensors in the Biotage® Extrahera™ system to perform live-monitoring of pressure inside SPE-columns is investigated. A test-rig containing the components necessary to simulate the pressure-cycle in the system is constructed and a printed-circuit board assembly is designed and implemented into its 24-column format. Liquid samples with varying viscosity are then synthesized using water and glycerol, which are used in a simplified 2-step SPE-process during which the pressure inside the columns is logged. The results obtained showed that the concept is viable and methods for clog detection as well as state assessment are discussed. However, it was established that the solution needs further testing involving complete SPE-processes with real samples before any detailed algorithms can be presented. A pre-study is finally done regarding solutions for minimizing the design to allow for implementation into the system's more spatially restricted 96-column format.
|
457 |
Analytical determination of emerging contaminants by using a new graphene-based enrichment material for solid-phase extraction and passive samplingLiu, Yang 24 March 2020 (has links)
Emerging contaminants represent newly identified organic chemical pollutants that are not yet covered by routine monitoring and regulatory programs. Current research on these contaminants is greatly hindered by the shortage of analytical methods due to the complex matrices, extremely low concentration and their “emerging” nature. In this study the innovative analytical and monitoring methods have been developed and validated for determination of emerging pollutants in water (including pharmaceutical and personal care products, pesticides and artificial sweeteners) based on graphene-silica composite as the solid-phase extraction (SPE) sorbent and as the receiving phase in passive sampler.
Graphene, a new allotropic member in the carbon family, has been considered to be a promising candidate for sorption material with high loading capacity because of its ultra-high specific surface area and large delocalized π-electron-rich structure. The composite employed in this work was synthesized by using the cross-link agent to covalently combine carboxylic acid groups of graphene-oxide with the amino groups of the modified silica gel. Afterwards, graphene-silica composite was obtained after treated with hydrothermal reaction in the microwave autoclave, which was demonstrated by X-ray diffraction (XRD).
The analytical procedure entails SPE followed by high performance liquid chromatography equipped with tandem mass spectrometers (HPLC-MS/MS). Several crucial parameters were optimized to improve recovery of the analytes, including the amount of sorbents, the ratio of graphene oxide/amino-silica and pH value of water samples. The best recovery results were achieved with 100 mg 10 % (w/w) graphene-silica composite, which were over 70 % except four artificial sweeteners, ranitidine and triclosan. Compared with its commercial counterpart Oasis HLB, pH value variation of water samples has less effect on the recoveries, making graphene composite to be a potential receiving phase of monitoring tool. The batch-to-batch reproducibility was verified on six independently SPE cartridges with graphene-silica composites from two repeatable synthetic batches, showing relative standard deviations (RSDs) in the range of 8.3 % to 19.1 %, except ibuprofen and saccharin. The cartridges proved to be reusable for at least 10 times consecutive extractions, with RSD < 14.9 %, except ibuprofen and diclofenac.
The Chemcatcher® passive sampler is frequently used for monitoring polar organic chemicals in surface water. Uptake kinetics is necessary to be quantified to calculate time-weighted average (TWA) concentration. A series of calibration experiments were conducted in the beaker renewal experiments as well as in the flow-through system with styrenedivinylbenzene-cross connect (SDB-XC) disks and graphene-silica composite as the receiving phase.
The results obtained from the beaker renewal experiments showed that the uptake kinetics of accumulated compounds with all Chemcatcher® configurations can keep linear within 2 weeks. The innovative configuration using graphene-silica composite powder placed between two PES membranes was able to accumulate eleven of the selected compounds with uptake rate (Rs) from 0.01 L/day (acesulfame K and sucralose) to 0.08 L/day (chlothianidin), while its commercial counterpart SDB-XC disks with polyethersulfone (PES) membranes can accumulate seven substances with Rs from 0.02 L/day (sucralose and chlothianidin) to 0.15 L/day (carbamazepine). In the flow-through system, when Chemcatchers® were equipped with SDB-XC disks without PES membranes, the linear uptake range for the majority of compounds was only in one week, except atrazine. The Rs of accumulated compounds were from 0.16 L/day (chloramphenicol) to 1.04 L/day (metoprolol) that are higher than the same substances in the beaker renewal experiments, in which the Rs of chloramphenicol and metoprolol were 0.09 L/day and 0.56 L/day respectively. However, if the PES membranes were employed, the uptake kinetics in both calibration experimental designs were comparable: the Rs of accumulated compounds from the configuration with SDB-XC disks covered by PES membranes were from 0.035 L/day (sucralose) to 0.17 L/day (carbamazepine) and from the configuration with graphene-silica composite were from 0.01 L/day (gemfibrozil) to 0.08 L/day (chlothianidin). Moreover, the uptake range can keep linear within two weeks. The developed Chemcatcher® method was successfully applied in real surface waters. 1-H benzontriazole, tolyltriazole and caffeine were the main contaminants in Elbe River and the Saidenbach drinking water reservoir. The investigated results between summer and autumn monitoring period were not significantly different.:Acknowledgement I
Abstract III
Zusammenfassung V
Content IX
List of Figures XIII
List of Tables XVII
Table of Abbreviations XIX
1. Motivation 1
2. Introduction 3
2.1 Emerging contaminants 3
2.1.1 Definition 3
2.1.2 Sources 3
2.1.3 Concern about the adverse impacts 5
2.2 Analysis of the emerging contaminants 7
2.2.1 General analytical process 7
2.2.2 Enrichment techniques 8
2.2.2.1 Liquid-liquid extraction (LLE) 8
2.2.2.2 Solid-phase extraction (SPE) 9
2.2.2.3 Innovative type of solid-phase extraction 13
2.2.3 Analytical methods 15
2.3 Graphene and its application in analytical chemistry 19
2.3.1 Introduction 19
2.3.2 Synthesis methods of graphene 20
2.3.3 Application in sample pre-treatment 21
2.3.3.1 Graphene-based material as SPE sorbent 21
2.3.3.2 Graphene-coated fibers as SPME sorbent 22
2.3.3.3 Magnetic graphene as MSPE sorbent 23
2.3.3.4 Graphene-based MIPs 24
2.4 Chemcatcher®—a passive sampling technique 25
2.4.1 Introduction 25
2.4.2 Theory 26
2.4.2.1 Equilibrium passive sampling 27
2.4.2.2 Kinetic passive sampling 28
2.4.3 Concept of Chemcatcher® 28
2.4.4 Calibration of Chemcatcher® 33
2.4.5 Performance and reference compounds 36
3. Study objectives and hypotheses 39
3.1 Study objectives 39
3.2 Hypotheses 41
4. Material and methods 43
4.1 Materials 43
4.1.1 Chemicals and solutions 43
4.1.2 Consumable materials and instruments 44
4.2 Synthesis of graphene-silica composite 46
4.3 SPE experiments 49
4.3.1 Packing method 49
4.3.2 SPE procedure 49
4.3.3 Optimization of SPE procedures 51
4.3.4 Repeatability and reusability test 52
4.4 Chemcatcher® experiments 53
4.4.1 Preparation and precondition 53
4.4.2 Calibration of Chemcatcher® 55
4.4.2.1 Preliminary test 55
4.4.2.2 Experimental design of the beaker batch tests 56
4.4.2.3 Experimental design of the flow-through system 57
4.4.3 Monitoring application of Chemcatcher® in surface water 59
4.4.4 Elution process 60
4.4.5 Statistic data evaluation 61
4.5 HPLC-MS/MS analysis 62
5. Results and discussion 63
5.1 Preparation and characterization of graphene-silica composite 63
5.2 SPE performance of the graphene-silica composite 67
5.2.1 Preliminary test of packing methods 67
5.2.2 Optimization of SPE procedures 68
5.2.2.1 The amount of sorbent 68
5.2.2.2 Graphene ratio in the composites 68
5.2.2.3 pH value of the water sample 69
5.2.3 Repeatability and reusability test 72
5.2.3.1 Performance of the off-line SPE 72
5.2.3.2 Repeatability and reusability test results 75
5.2.4 Summarized discussion of the SPE performance 76
5.3 Calibrating results of Chemcatcher® 86
5.3.1 Pre-test results 86
5.3.1.1 Feasibility test of commercial disks as receiving phase 86
5.3.1.2 Stability test 88
5.3.1.3 Elution optimization. 88
5.3.1.4 Recovery of the filters 92
5.3.2 Calibration results of renewal experiments 93
5.3.2.1 SDB-XC disks without and with membranes 93
5.3.2.2 Graphene-silica composite as receiving phase 97
5.3.3 Calibration results of the flow-through system experiments 101
5.3.3.1 Determination of experimental parameters 101
5.3.3.2 Concentration control 103
5.3.3.3 Calibration results 105
5.3.3.4 Preliminary evaluation of performance and reference compounds 112
5.4 Application of Chemcatcher® in surface water 114
5.5 Discussion about problems of commercial disks as receiving phase in Chemcatcher® 118
5.5.1 Deformation of commercial disks 118
5.5.2 The particles in the solution after elution 119
6. Conclusion and perspective 121
7. Annex 125
7.1 Material and methods 125
7.1.1 Chemicals 125
7.1.2 Silica gel and graphene oxide 144
7.1.3 Microwave reduction program 144
7.1.4 Working schedule of the calibration experiments in flow-through system 144
7.1.5 HPLC-MS/MS conditions 146
7.2 Experimental results 149
7.2.1 Stability of the colloid solution of graphene oxide 149
7.2.2 EDX analysis results 149
7.2.3 HPLC-MS/MS results 152
7.2.4 Calibrating results of the beaker renewal experiment 153
7.2.5 Calibrating results of the flow-through system experiments 157
7.2.6 Monitoring results in the Elbe River 161
Reference 163
|
458 |
Synthesis and investigation of oligomers based on phenylalanine as interfacial agents in fibre-reinforced thermoplastic composite materials / Synthèse et évaluation d’oligomères contenant des phénylalanines en tant qu’agents interfaciaux pour matériaux composites thermoplastiques renforcés de fibresLouwsma, Jeroen 06 December 2018 (has links)
Le développement d’agents interfaciaux pour des matériaux composites renforcés de fibres est nécessaire afin d’obtenir des matériaux performants notamment pour l’industrie automobile. Le projet se concentre sur la synthèse d’oligomères à séquences contrôlées préparés par synthèse en phase solide par réaction d’amidification et de cycloaddition assistée par le cuivre entre un azoture et un alcyne pour introduire précisément des unités de phénylalanine et des groupes aliphatiques. Ces oligomères ont été testés comme agents interfaciaux pour des matériaux composites à base de polypropylène renforcés de fibres de Kevlar. Leur capacité à s’adsorber sur les fibres a été étudiée de façon qualitative par microscopie électronique à balayage et quantitative par analyse gravimétrique. Des expériences préliminaires sur des fibres de Kevlar traitées avec des oligomères synthétisés dans une matrice de polypropylène ont été réalisées pour estimer leur potentielle utilisation dans des matériaux composites. / The development of interfacial agents for fibre-reinforced composite materials is needed to obtain performant materials especially for the automotive industry. The project focused on the synthesis of sequence-controlled oligomers prepared by solid phase synthesis using amidation and copper-assisted alkyne-azide cycloaddition reactions to introduce precisely phenylalanine and aliphatic building blocks. These oligomers were evaluated as potential interfacial agents for Kevlar fibre-reinforced polypropylene composite materials. Their ability to adsorb on the fibres was investigated qualitatively by scanning electron microscopy and quantitatively by gravimetric analysis. Some preliminary experiments on the Kevlar fibres treated with some of the synthesised oligomers in a polypropylene matrix were conducted to estimate their potential use in composite materials.
|
459 |
Evaluation of the immunogenicity of SARS-CoV-2 B cell epitopesHogander, Sofia January 2022 (has links)
Background: The COVID-19 pandemic is caused by the SARS-CoV-2 virus, which enter the host cells through interactions between the receptor-binding domain (RBD) on the S-protein and the ACE-2 receptor on the host cell. A novel type of vaccine strategy is peptide vaccines, with great potential as a faster and more selective approach to conventional vaccine development. This study focuses on the possibility of generating an antibody response through synthetic peptides harboring B cell epitopes. Aim: This project aims to investigate the potential of immunogenic peptides to generate an antibody response when used as synthetically produced peptides. As proof-of-concept, the project studies the interactions between previously identified monoclonal antibodies with defined B cell epitopes and the corresponding peptide sequences. Method: The interactions are evaluated by different ELISA experiments. The candidate peptides are additionally investigated on their binding to polyclonal serum with established S reactive antibodies. Furthermore, the project includes synthesis of one peptide by solid phase peptide synthesis. Results: The ELISA experiments presented no interaction between the synthetic peptides and the monoclonal antibodies or human sera. Conclusion: The project fulfilled its aim to study the interaction between the B cell epitopes and the monoclonal antibodies. However, no binding was observed. Despite the many advantages in production and stability, development of B cell epitope vaccines come with many challenges. Future will entail if synthetic peptides harboring B cell epitopes can be used as vaccines, or if peptide vaccines will be a focus when a T cell response is to be induced.
|
460 |
Nové metody používané při zjišťování příčin vzniku požárů / Newe methods used for the finding of fire causesPřichystal, Lukáš January 2011 (has links)
Master’s thesis deals with a determination problem of ignitable liquids from fire debris. The aim of this work is to introduce the properties of used fire accelerants and to give an overview and evaluation of the various techniques which can be conducive to the fire investigator. Determination of fire accelerants from fire debris was made by the technique of solid phase microextraction (SPME) with subsequent chemical analysis by GC/MS. Based on the chromatographic results were established the target compounds and reconstructed ion chromatograms which are typical for some kinds of flammable liquids. There were used gasoline, diesel, kerosene and technical gasoline (white spirit) as the fire accelerants. This work also deals with the influence of interfering products in fire debris analysis, including their identification and characterization. Different kinds of substrates were burned, extracted and analyzed in order to identify all the interfering products that they may release.
|
Page generated in 0.0498 seconds