• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 19
  • 3
  • 2
  • Tagged with
  • 47
  • 47
  • 11
  • 11
  • 9
  • 8
  • 7
  • 6
  • 6
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Development and modeling of a dual-frequency microwave burn rate measurement system for solid rocket propellant

Foss, David T. 21 November 2012 (has links)
A dual-frequency microwave bum rate measurement system for solid rocket motors has been developed and is described. The system operates in the X-band (8.2-12.4 Ghz) and uses two independent frequencies operating simultaneously to measure the instantaneous bum rate in a solid rocket motor. Modeling of the two frequency system was performed to determine its effectiveness in limiting errors caused by secondary reflections and errors in the estimates of certain material properties, particularly the microwave wavelength in the propellant. Computer simulations based upon the modeling were performed and are presented. Limited laboratory testing of the system was also conducted to determine its ability perform as modeled. Simulations showed that the frequency ratio and the initial motor geometry (propellant thickness and combustion chamber diameter) determined the effectiveness of the system in reducing secondary reflections. Results presented show that higher frequency ratios provided better error reduction. Overall, the simulations showed that a dual frequency system can provide up to a 75% reduction in burn rate error over that returned by a single frequency system. The hardware and software for dual frequency measurements was developed and tested, however, further instrumentation work is required to increase the rate at which data is acquired using the methods presented here. The system presents some advantages over the single frequency method but further work needs to be done to realize its full potential. / Master of Science
42

Développement des méthodes de calcul et de mesure de la courbe J-R d'un composite polymère particulaire propergol / : par Luc Giasson.

Giasson, Luc, January 2003 (has links)
Thèse (M.Eng.) -- Université du Québec à Chicoutimi, programme extensionné à l'Université du Québec à Rimouski, 2003. / Bibliogr.: f. 107-112. Document électronique également accessible en format PDF. CaQCU
43

Synthesis And Characterization Of N-N-Bonded Epoxy Resins As Binders For Solid Propellants

Amanulla, Syed 06 1900 (has links) (PDF)
No description available.
44

Simulation numérique de suspensions frictionnelles. Application aux propergols solides / Numerical simulation of frictional suspensions. Application to solid propellants

Gallier, Stany 14 October 2014 (has links)
Ce travail se consacre à la simulation numérique tridimensionnelle de suspensions denses, monodispersés, non-inertielles et non-colloïdales. Nous avons pour ce faire développé une méthode numérique basée sur une approche de type domaine fictif. Le modèle inclut également une modélisation détaillée des forces de lubrification ainsi que des forces de contact avec prise en compte des rugosités et du frottement. Un résultat majeur est le rôle important du frottement entre particules sur la rhéologie de la suspension – en particulier sur la viscosité de cisaillement et les contraintes normales – mais aussi sur la viscosité normale ou la diffusion des particules. Le frottement contribue à augmenter fortement la contrainte de contact alors que la contrainte hydrodynamique n’est quasiment pas affectée. Cette contrainte de contact s’avère être la contrainte majoritaire dans les suspensions denses. La prise en compte du frottement dans les simulations permet de se rapprocher notablement des résultats expérimentaux. Le rôle du confinement est également étudié et les parois s’avèrent conduire à une organisation locale marquée de type hexagonal ainsi qu’à un glissement. Cette organisation entraîne des effets sensibles sur les propriétés rhéologiques surtout pour la première différence de contraintes normales N1 qui peut localement devenir positive. Enfin, nous abordons l’impact d’amas percolants de particules dans la suspension. La fraction volumique de percolation se situe entre 0,3 et 0,4 avec un effet marqué de la rugosité, du frottement et de la taille du domaine. / This work is devoted to three-dimensional numerical simulations of monodisperse non-inertial non-colloidal concentrated suspensions. To this end, a numerical method based on a fictitious domain technique is developed. It includes a detailed lubrication model as well as a contact model allowing for particle roughness and friction. One major result is the strong effect of friction on rheology, especially on shear viscosity and normal stresses. It also alters markedly normal viscosity or particle diffusion. Friction acts mostly through an increase in the contact stress since the hydrodynamic stress remains unaffected. This contact stress occurs to be the prevailing stress in dense suspensions. Overall, frictional results are in much better agreement with available experiments. The role of confinement is investigated as well and walls are shown to induce a strong local hexagonal ordering with a significant wall slip. This wall-induced ordering has a notable effect on rheology, especially on the first normal stress difference N1 that can be locally positive. Finally, we have studied the percolation of particle clusters across the suspension. The critical volume fraction is found to be in the range 0.3~0.4, with a significant dependence on roughness, friction, and domain size. Percolating clusters characteristics can globally be described by an isotropic percolation theory, with discrepancies regarding some critical exponents however. The role of percolating clusters on rheology is found to be very limited.
45

Etude de la relation microstructure/propriétés mécaniques jusqu’à rupture des propergols composites : Caractérisation expérimentale et modélisation micromécanique par éléments finis / Etude de la relation microstructure/propriétés mécaniques jusqu’à rupture des propergols composites : Caractérisation expérimentale et modélisation micromécanique par éléments finis

Toulemonde, Paul-Aymé 18 November 2016 (has links)
Ce travail de thèse vise à identifier les mécanismes par lesquels la fraction volumique de charges, la distribution de tailles des charges, le comportement mécanique du liant et les propriétés d’adhésion liant/charge des propergols composites influent sur le comportement mécanique jusqu’à rupture de ces matériaux. Des calculs de microstructures 2D par éléments finis sont mis en œuvre pour caractériser qualitativement l’évolution de la microstructure du composite au cours d’une sollicitation de traction uniaxiale à faible vitesse de déformation. Ils prennent notamment en compte un modèle de zone cohésive pour représenter la décohésion à l’interface liant/charge et un critère original de ruine de la microstructure. Les résultats numériques sont favorablement comparés aux tendances obtenues expérimentalement sur propergols composites industriels et modèles. Par ailleurs, une validation de l’approche qualitative précédente est conduite en effectuant une confrontation quantitative du comportement mécanique et de la variation volumique d’un composite modèle, obtenus par simulation de microstructures 3D et par caractérisations expérimentales. Enfin, la tenue du propergol dans un assemblage propergol/lieur soumis à un test de pelage est étudiée expérimentalement. / This work aims at understanding the relationship between solid propellants particles volume fraction, particles size distribution, binder mechanical properties and binder/particles bonding with the mechanical behavior up to failure of these materials. Finite elements analyses on 2D microstructures are performed in order to qualitatively characterize the microstructure evolution throughout uniaxial tensile loading at small strain rate. These simulations account for the binder/particles debonding with a cohesive zone model and implement an original failure criterion. Simulation and experimental results are consistent. Besides, a quantitative comparison between simulations on 3D microstructures and experimental data is drawn in order to validate the above qualitative results. It is performed on a model composite and compares both the mechanical behavior and the volume variations. At last, the propellant failure during a peeling test of the liner/propellant structure is studied experimentally.
46

Investigations on Azide Functional Polymers as Binders for Solid Propellants

Reshmi, S January 2014 (has links) (PDF)
This thesis contains investigations in the area of polymers herein propellants binders are modified functionally to meet the requirements of future energetic propellants. Chapter 1 contains a broad introduction to the area of recent advances in solid propellants and the numerous applications of ‘Click Chemistry’. Chapters 2 details the materials, characterization tools and the experimental techniques employed for the studies. This is followed by Chapter 3, 4, and 5 which deals with functional modification of various propellants binders, their characterisation and evaluation in propellant formulations. Chapter 6 details with the thermal decomposition of diazides and its reaction with alkenes. The advent of modern rockets has opened a new era in the history of space exploration as well as defence applications. The driving force of the rocket emanates from the propellant – either solid or liquid. Composite solid propellants find an indispensable place, in today’s rockets and launch vehicles because of the inherent advantages such as high reliability, easy manufacturing, high thrust etc. The composite propellant consisting of inorganic oxidiser like ammonium perchlorate, (AP), ammonium nitrate (AN) etc), metallic fuel (aluminium powder, boron etc) and polymeric fuel binder (hydroxyl terminated polybutadiene-HTPB, polybutadiene-acrylic acid-acrylonitrile PBAN, glycidyl azide polymer (GAP), polyteramethylene oxide (PTMO) etc. is used in igniters, boosters, upper stage motors and special purpose motors in large launch vehicles. Large composite solid propellant grains or rocket motors in particular, demand adequate mechanical properties to enable them to withstand the stresses imposed during operation, handling, transportation and motor firing. They should also have a reasonably long ‘potlife’ to provide sufficient window for processing operations such as mixing and casting which makes the selection of binder with appropriate cure chemistry more challenging. In all composite solid propellants currently in use, polymers perform the role of a binder for the oxidiser, metallic fuel and other additives. It performs the dual role of imparting dimensional stability to the composite, provides structural integrity and good mechanical properties to the propellant besides acting as a fuel to impart the required energetics. Conventionally, the terminal hydroxyl groups in the binders like GAP, PTMO and HTPB are reacted with diisocyanates to form a polyurethane network, to impart the necessary mechanical properties to the propellant. A wide range of diisocyantes such as tolylene diisocyanate (TDI) and isophorone diisocyanate (IPDI) are used for curing of these binders. However, the incompatability of isocyanates with energetic oxidisers like ammonium dinitramide (ADN), hydrazinium nitroformate (HNF), short ‘potlife’ of the propellant slurry and undesirable side reactions with moisture are limiting factors which adversely affect the mechanical properties of curing binders through this route. The objective of the present study is to evolve an alternate approach of curing these binders is to make use of the 1,3 dipolar addition reactions between azide and alkyne groups which is a part of ‘Click chemistry’. This can be accomplished by the reaction of azide groups of GAP with triple bonds of alkynes and reactions of functionally modified HTPB/PTMO (azide/alkyne) to yield 1,2,3 -triazole based products. This offers an alternate route for processing of solid propellants wherein, the cured resins that have improved mechanical properties, better thermal stability and improved ballistic properties in view of the higher heat of decomposition resulting from the decomposition of the triazole groups. GAP is an azide containing energetic polymer. The azide groups can undergo reaction with alkynes to yield triazoles. In, Chapter 3 the synthesis and characterisation of various alkynyl compounds including bis propargyl succinate (BPS), bis propargyl adipate (BPA), bis propargyl sebacate (BPSc.) and bis propargyl oxy bisphenol A (BPB) for curing of GAP to yield triazoles networks are studied. The mechanism of the curing reaction of GAP with these alkynyl compounds was elucidated using a model compound viz. 2-azidoethoxyethane (AEE). The reaction mechanism has been analysed using Density Functional Theory (DFT) method. DFT based theoretical calculations implied marginal preference for 1, 5 addition over the 1, 4 addition for the uncatalysed cycloaddition reaction between azide and alkyne group. The detailed characterisation of these systems with respect to the cure kinetics, mechanical properties, dynamic mechanical behaviour and thermal decomposition characteristics were done and correlated to the structure of the network. The glass transition temperature (Tg), tensile strength and modulus of the system increased with crosslink density which in turn is, controlled by the azide to alkyne molar stoichiometry. Thermogravimetic analysis (TGA) showed better thermal stability for the GAP-triazole compared to GAP based urethanes. Though there have been a few reports on curing of GAP with alkynes, it is for the first time that a detailed characterisation of this system with respect to the cure kinetics, mechanical, dynamic mechanical, thermal decomposition mechanism of the polymer is being reported. To extent the concept of curing binders through 1,3 dipolar addition reaction, the binder HTPB as chemically transformed to propargyloxy carbonyl amine terminated polybutadiene (PrTPB) with azidoethoxy carbonyl amine terminated polybutadiene (AzTPB) and propargyloxy polybutadiene (PTPB). Similarly, PTMO was convnerted to propargyloxy polytetramethylene oxide (PTMP). Triazole-triazoline networks were derived by the reaction of the binders with alkyne/azide containing curing agents. The cure characteristics of these polymers (PrTPB with AzTPB, PTPB with GAP and PTMP with GAP) were studied by DSC. The detailed characterisations of the cured polymers for were done with respect to the, mechanical, dynamic mechanical behaviour and thermal decomposition characteristics were done. Propellant level studies were done using the triazoles derived from GAP, PrTPB-AzTPB, PTPB and PTMP as binder, in combination with ammonium perchlorate as oxidiser. The propellants were characterised with respect to rheological, mechanical, safety, as well as ballistic properties. From the studies, propellant formulations with improved energetics, safety characteristics, processability and mechanical properties as well defect free propellants could be developed using novel triazole crosslinked based binders. Chapter 6, is aimed at understanding the mechanism of thermal decomposition of diazido compounds in the first section. For this, synthesis and characterisation of a diazido ester 1,6 –bis (azidoacetoyloxy) hexane (HDBAA) was done. There have been no reports on the thermal decomposition mechanism of diazido compounds, where one azide group may influence the decomposition of the other. The thermal decomposition mechanism of the diazido ester were theoretically predicted by DFT method and corroborated by pyrolysis-GC-MS studies. In the second section of this chapter, the cure reaction of the diazido ester with the double bonds of HTPB has been investigated. The chapter 6B reports the mechanism of Cu (I) catalysed azide-alkene reaction validated using density functional theory (DFT) calculations in isomers of hexene (cis-3-hexene, trans-3-hexene and 2-methy pentene: model compound of HTPB) using HDBAA. This the first report on an isocyanate free curing of HTPB using an azide. Chapter 7 of the thesis summarizes the work carried out, the highlights and important findings of this work. The scope for future work such as development of high performance eco-friendly propellants based on triazoles in conjunction with chlorine-free oxidizer like ADN, synthesis of compatible plasticisers and suitable crosslinkers have been described. This work has given rise to one patent, three international publications and four papers in international conferences in the domain.
47

Atomistic Simulations of Bonding, Thermodynamics, and Surface Passivation in Nanoscale Solid Propellant Materials

Williams, Kristen 2012 August 1900 (has links)
Engineering new solid propellant materials requires optimization of several factors, to include energy density, burn rate, sensitivity, and environmental impact. Equally important is the need for materials that will maintain their mechanical properties and thermal stability during long periods of storage. The nanoscale materials considered in this dissertation are proposed metal additives that may enhance energy density and improve combustion in a composite rocket motor. Density Functional Theory methods are used to determine cluster geometries, bond strengths, and energy densities. The ground-state geometries and electron affinities (EAs) for MnxO?: x = 3, 4, y = 1, 2 clusters were calculated with GGA, and estimates for the vertical detachment energies compare well with experimental results. It was found that the presence of oxygen influences the overall cluster moment and spin configuration, stabilizing ferrimagnetic and antiferromagnetic isomers. The calculated EAs range from 1.29-1.84 eV, which is considerably lower than the 3.0-5.0 eV EAs characteristic of current propellant oxidizers. Their use as solid propellant additives is limited. The structures and bonding of a range of Al-cyclopentadienyl cluster compounds were studied with multilayer quantum mechanics/molecular mechanics (QM:MM) methods. The organometallic Al-ligand bonds are generally 55-85 kcal/mol and are much stronger than Al-Al interactions. This suggests that thermal decomposition in these clusters will proceed via the loss of surface metal-ligand units. The energy density of the large clusters is calculated to be nearly 60% that of pure aluminum. These organometallic cluster systems may provide a route to extremely rapid Al combustion in solid rocket motors. Lastly, the properties of COOH-terminated passivating agents were modeled with the GPW method. It is confirmed that fluorinated polymers bind to both Al(111) and Al(100) at two Al surface sites. The oligomers HCOOH, CH3CH2COOH, and CF3CF2COOH chemisorb onto Al(111) with adsorption energies of 10-45 kcal/mol. The preferred contact angle for the organic chains is 65-85 degrees, and adsorption energy weakens slightly with increasing chain length. Despite their relatively weak adsorption energies, fluorinated polymers have elevated melting temperatures, making them good passivation materials for micron-scale Al fuel particles.

Page generated in 0.0618 seconds