Spelling suggestions: "subject:"solitons dde ricci"" "subject:"solitons dde ficci""
1 |
A geometria das mÃtricas tipo-Einstein / The geometric of like-Einstein metricsErnani de Sousa Ribeiro Junior 29 August 2011 (has links)
CoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superior / Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico / O objetivo deste trabalho à estudar a geometria das mÃtricas tipo-Einstein (solitons de Ricci, quase solitons de Ricci e mÃtricas quasi-Einstein). Mais especificamente, vamos obter equaÃÃes de estrutura, exemplos, fÃrmulas integrais e estimativas que permitirÃo caracterizar estas classes de mÃtricas. / The purpose of this work is study the geometric of the like-Einstein metrics (Ricci soliton, almost Ricci solitons and quasi-Einstein metrics). More specifically, we obtain structure equations, examples, integral formulae and estimates that will enable characterize these classes of metrics.
|
2 |
Solitons de Ricci e métricas quasi-Einstein em variedades homogêneas / Ricci solitons and quasi-Einstein metrics on homogeneous manifoldsSilva Filho, João Francisco da January 2013 (has links)
SILVA FILHO, João Francisco da . Solitons de Ricci e métricas quasi-Einstein em variedades homogêneas. 2013. 84 f. Tese (Doutorado em Matemática) - Centro de Ciências, Universidade Federal do Ceará, Programa de Pós-Graduação em Matemática, Fortaleza, 2013. / Submitted by Erivan Almeida (eneiro@bol.com.br) on 2014-02-06T13:19:06Z
No. of bitstreams: 1
2013_tese_jfsilvafilho.pdf: 576320 bytes, checksum: 80c82edc3878c2e908200270323900e8 (MD5) / Approved for entry into archive by Rocilda Sales(rocilda@ufc.br) on 2014-02-18T11:43:07Z (GMT) No. of bitstreams: 1
2013_tese_jfsilvafilho.pdf: 576320 bytes, checksum: 80c82edc3878c2e908200270323900e8 (MD5) / Made available in DSpace on 2014-02-18T11:43:07Z (GMT). No. of bitstreams: 1
2013_tese_jfsilvafilho.pdf: 576320 bytes, checksum: 80c82edc3878c2e908200270323900e8 (MD5)
Previous issue date: 2013 / The purpose of this work is study Ricci solitions and quasi-Einstein metrics on simply connected homogeneous Riemannian manifolds, with emphasis in problems in three and four dimensions, trying to characterize and to describe explicitly such structures, getting results of existence, uniqueness and consequently, build new examples on these class of manifolds. The quoted description consists basically in to obtain conditions that ensure the existence and show explicitly the family of vector fields that generate each of these structures, relating them identifying what of these vector fields are gradient. We should highlight that in the part of this work that corresponds to homogeneous three manifolds, we will consider the classification relative to dimension of isometry group, while in the part that corresponds to homogeneous four manifolds, we treat only the solvable geometry Lie type, namely, the simply connected solvable Lie group with left invariants metrics. / Este trabalho tem como objetivo principal estudar os solitons de Ricci e as métricas quasi-Einstein em variedades riemannianas homogêneas e simplesmente conexas, enfatizando problemas em dimensões três e quatro, procurando caracterizar e descrever explicitamente tais estruturas, obtendo resultados de existência, unicidade e consequentemente, construir novos exemplos sobre essas classes de variedades. A descrição mencionada, consiste basicamente em determinar condições que garantam existência e explicitar a família de campos de vetores que geram todas essas possíveis estruturas, relacionando-os entre si e identificando quais desses campos de vetores são do tipo gradiente. Devemos ressaltar que a parte do trabalho que corresponde às variedades homogêneas de dimensão três considera a classificação relativa à dimensão do grupo de isometrias, enquanto a parte que corresponde às variedades homogêneas de dimensão quatro, contempla apenas uma subclasse das variedades homogêneas de dimensão quatro que é constituída pelas variedades solúveis tipo-Lie, ou seja, grupos de Lie solúveis, simplesmente conexos e munidos de métrica invariante à esquerda.
|
3 |
O teorema de decomposição de hodge-de rham e os solitons de ricciAlmeida Junior, Raimundo José 26 March 2013 (has links)
Submitted by Marcio Filho (marcio.kleber@ufba.br) on 2016-06-07T14:20:01Z
No. of bitstreams: 1
CÓPIA DA DISSERTAÇÃO-RAIMUNDO.pdf: 1863654 bytes, checksum: 4e86de440e13f7c0831c1f65d5f87373 (MD5) / Approved for entry into archive by Uillis de Assis Santos (uillis.assis@ufba.br) on 2016-06-07T18:36:05Z (GMT) No. of bitstreams: 1
CÓPIA DA DISSERTAÇÃO-RAIMUNDO.pdf: 1863654 bytes, checksum: 4e86de440e13f7c0831c1f65d5f87373 (MD5) / Made available in DSpace on 2016-06-07T18:36:05Z (GMT). No. of bitstreams: 1
CÓPIA DA DISSERTAÇÃO-RAIMUNDO.pdf: 1863654 bytes, checksum: 4e86de440e13f7c0831c1f65d5f87373 (MD5) / A teoria dos solitons de Ricci desempenha um papel fundamental no estudo dos fluxos de Ricci Hamiltonianos. Tal estudo serviu de base para a demonstração da Conjectura de Poincaré, problema que durou muitos anos na Matemática e só foi solucionado por Gregori Perelman em 2002. Este trabalho tem como objetivo demonstrar o Teorema de decomposição de Hodge-de Rham e apresentar resultados acerca dos solitons de Ricci obtidos a partir deste. Encontram-se estes resultados no artigo "Some applications of the Hodge-de Rham decomposition to Ricci solitons
|
4 |
Applications semi-conformes et solitons de Ricci / Semi-conformal mappings and Ricci solitonsGhandour, Elsa 09 July 2018 (has links)
Dans cette thèse, nous étudions principalement les applications semi-conformes et leur influence sur la résolution de certaines équations géométriques importantes comme celle d’un soliton de Ricci et celle d’une application biharmonique. Dans la première partie, nous appliquons un ansatz qui permet de construire des applications semi-conformes à partir d’une équation différentielle en une fonction de deux variables. Nous caractérisons les solutions réelles-analytiques. Parmi les solutions explicites obtenues, nous trouvons le premier exemple d’une application semi-conforme non-harmonique définie entièrement sur R3 à valeurs dans le plan complexe. Dans la deuxième partie, nous étudions les solitons de Ricci. Nous nous intéressons aux solitons de dimension 3, où ils peuvent être décrits, au moins localement, en terme d’une application semi-conforme. Nous développons une nouvelle méthode de construction de ces solitons à partir des transformations biconformes, particulièrement adaptées à l’étude de l’unicité de la structure. Finalement, nous introduisons une nouvelle notion de morphisme harmonique généralisé qui, comme son nom l’indique, contient les morphismes harmoniques comme un cas particulier. Cette classe d’applications a une importance dans la théorie d’applications biharmoniques. Les morphismes harmoniques généralisés ont une caractérisation nette qui permet de donner plusieurs exemples et méthodes de construction d’applications biharmoniques non-harmonique. / In this work, we primarily study semiconformal mappings and their influence in the resolution of important geometric equations, such as those for a Ricci soliton and those for a biharmonic maps. In the first part of this thesis, we exploit an ansatz for the construction of semi-conformal mappings from a differential equation in a function of two variables. We characterize real-analytic solutions.Among the resulting explicit solutions, we find the first known example of an entire semi-conformal mapping into the plane which is not harmonic. In the second part, we study Ricci solitons.We are particularly interested in 3-dimensional Ricci solitons, as they can be described at least locally, in terms of a semi-conformal map. We develop a construction method of solitons from biconformal deformations, particularly adapted to the study of the structure unicity. Finally, we introduce a new notion of generalized harmonic morphism, which, as the name suggests, contain the harmonic morphisms as a special case. These mappings have an elegant characterization which enables the construction of explicit examples, as well as impacting on the theory of biharmonic mappings.
|
5 |
Solitons de Ricci e mÃtricas quasi-Einstein em variedades homogÃneas / Ricci solitons and quasi-Einstein metrics on homogeneous manifoldsJoÃo Francisco da Silva Filho 10 October 2013 (has links)
Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico / CoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superior / Este trabalho tem como objetivo principal estudar os solitons de Ricci e as mÃtricas quasi-Einstein em variedades riemannianas homogÃneas e simplesmente conexas, enfatizando problemas em dimensÃes trÃs e quatro, procurando caracterizar e descrever explicitamente tais estruturas, obtendo resultados de existÃncia, unicidade e consequentemente, construir novos exemplos sobre essas classes de variedades. A descriÃÃo mencionada, consiste basicamente em determinar condiÃÃes que garantam existÃncia e explicitar a famÃlia de campos de vetores que geram todas essas possÃveis estruturas, relacionando-os entre si e identificando quais desses campos de vetores sÃo do tipo gradiente. Devemos ressaltar que a parte do trabalho que corresponde Ãs variedades homogÃneas de dimensÃo trÃs considera a classificaÃÃo relativa à dimensÃo do grupo de isometrias, enquanto a parte que corresponde Ãs variedades homogÃneas de dimensÃo quatro, contempla apenas uma subclasse das variedades homogÃneas de dimensÃo quatro que à constituÃda pelas variedades solÃveis tipo-Lie, ou seja, grupos de Lie solÃveis, simplesmente conexos e munidos de mÃtrica invariante à esquerda. / The purpose of this work is study Ricci solitions and quasi-Einstein metrics on simply connected homogeneous Riemannian manifolds, with emphasis in problems in three and four dimensions, trying to characterize and to describe explicitly such structures, getting results of existence, uniqueness and consequently, build new examples on these class of manifolds. The quoted description consists basically in to obtain conditions that ensure the existence and show explicitly the family of vector fields that generate each of these structures, relating them identifying what of these vector fields are gradient. We should highlight that in the part of this work that corresponds to homogeneous three manifolds, we will consider the classification relative to dimension of isometry group, while in the part that corresponds to homogeneous four manifolds, we treat only the solvable geometry Lie type, namely, the simply connected solvable Lie group with left invariants metrics.
|
Page generated in 0.0842 seconds