• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 379
  • 191
  • 56
  • 49
  • 22
  • 13
  • 13
  • 7
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 871
  • 178
  • 81
  • 69
  • 64
  • 59
  • 54
  • 52
  • 51
  • 50
  • 47
  • 46
  • 40
  • 40
  • 38
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
311

Percutaneous delivery of thalidomide and its N-alkyl analogues for treatment of rheumatoid arthritis / Colleen Goosen

Goosen, Colleen January 1998 (has links)
Thesis (PhD (Pharmaceutics))--PU for CHE, 1999.
312

Use of in silico predictors, solubility and permeability to select bioavailability and bioequivalence markers in herbal supplements

Pade, Devendra Shrikant, 1972- 28 August 2008 (has links)
Due to their rising popularity, herbal supplements have created a specific niche for themselves between the food and the drug industry. Due to their categorization as dietary supplements, they lack scientific seriousness where as on the other hand they act like unregulated drugs with potential effects. Finding scientific data of questionable accuracy for herbal supplements is not uncommon, which is usually designed to sell products rather then provide unbiased information. Hence, development of performance standards based on the bioavailability of the active components of herbal extracts promises to be an attractive solution towards regulating the inflow of meaningful products in the herbal supplement market. Solubility, partition coefficient and permeability are the fundamental properties for studying drug absorption. Top selling herbal extracts from the United States that included Kava, Ginkgo biloba, Milk thistle, Ginseng, Black cohosh, Garlic, Valerian, and Echinacea were selected and in silico descriptors such as CLogP, minimal cross-sectional area, polar surface area and in vitro permeability using the Caco-2 cell model and SimBioDAS® of their active components, determined. Based on the interparameter relationships between the minimal cross sectional area, CLogP, polar surface area and the in vitro permeability of the active components, bioavailability/bioequivalence markers were predicted for Kava, Ginkgo biloba and Milk thistle. Kawain was predicted as a marker for Kava, Ginkgolide B for the ginkgo terpenes and quercetin for the flavonol glycosides in Ginkgo biloba and silycristin as a marker for Milk thistle (silymarin). Silymarin comprising of isomers silycristin, silydianin, silybin A, silybin B, isosilybin A and isosilybin B was selected as a representative extract for further confirmation of marker prediction. Equilibrium solubility, experimental octanol-water partition coefficient values, and assay and in vitro dissolution profiles were determined for each of the active isomers in extract and market products respectively. The pharmacokinetics and absolute bioavailability of each of the active isomers was determined in male Sprague Dawley rats following intravenous and oral administration of the silymarin extract. Equilibrium solubility values indicated that all the silymarin isomers were practically insoluble, and silycristin and silydianin had relatively higher solubility values as compared to the other isomers. Experimental partition coefficient values correlated with the predicted partition coefficient (CLogP) with an r² of 0.834. Based on their equilibrium solubility and the partition coefficient (experimental and predicted) the active isomers were classified according to the Biopharmaceutic Classification System (BCS). Thus, isomers silybin A, silybin B, isosilybin A and isosilybin B were classified as Class II compounds (High PermeabilityLow Solubility) where as silydianin was classified as a Class IV compound (Low Permeability-Low Solubility). Silycristin was classified as a intermediate between Class II and Class IV. Absolute bioavailability (F) for silycristin was found to be the lowest (0.15±0.1), followed by silybin A (0.20±0.04) followed by silybin B (0.62±0.08). Silycristin being one of the least permeable and bioavailable component, was selected as a marker for silymarin, further confirming its prediction based on the correlations between the in silico descriptors and in vitro permeability. Pharmacokinetic parameters such as area under the curve, half life, volume of distribution, clearance and F for the components suggest significant differences between not only the silymarin isomers but also diastereomers of silybin (A and B) and isosilybin (A and B). Selection of bioavailability-bioequivalence markers, based on their least permeability/bioavailability, proves to be the most conservative and meaningful approach towards standardization of complex mixtures such as herbal extracts and supplements.
313

Percutaneous delivery of thalidomide and its N-alkyl analogues for treatment of rheumatoid arthritis / Colleen Goosen

Goosen, Colleen January 1998 (has links)
Rheumatoid arthritis (RA) is a chronic inflammatory joint disease associated with high levels of tumour necrosis factor-alpha (TNF-a) in synovial fluid and synovial tissue (Saxne et al., 1989). Thalidomide is a proven inhibitor of the biological synthesis of TNF-a (Sampaio et al., 1991) and is believed to rely on this action for its suppression of the wasting of tissue which accompanies RA. Oral administration of thalidomide has proven to be effective in RA, but unacceptable side effects are easily provoked (Gutierrez-Rodriguez, 1984). Administration of thalidomide via the dermal route can down-regulate TNF-a production in and around the affected joint, and this without raising the systemic blood level to a problematical level. Based on thalidomide's physicochemical properties, it is unlikely that it can be delivered percutaneously at a dose required for RA. Therefore, we have embraced the idea of using N-alkyl analogues of thalidomide. The most important feature that an analogue of this compound might contribute is decreased crystallinity and increased lipophilicity. Ordinarily both these parameters should favour percutaneous delivery. The current study was primarily aimed at exploring the feasibility of percutaneous delivery of thalidomide and subsequently, three of its odd chain IV-alkyl analogues (methyl, propyl and pentyl) via physicochemical characterization and assessment of their innate abilities to diffuse through skin as an initial step towards developing a topical dosage form for the best compound. The biological activities, more specifically their potential to inhibit the production of TNF-a was determined for thalidomide and its N-alkyl analogues. In order to achieve the objectives, the study was undertaken by synthesizing and determining the physicochemical parameters of thalidomide and its N-alkyl analogues. A high level of crystallinity is expressed in the form of a high melting point and heat of fusion. This limits solubility itself, and thus also sets a limit on mass transfer across the skin. Generally, the greater a drug's innate tendency to dissolve, the more likely it is that the drug can be delivered at an appropriate rate across the skin (Ostrenga et al., 1971). Therefore, the melting points and heats of fusion were determined by differential scanning calorimetry. Aqueous solubility and the partition coefficient (relative solubility) are major determinants of a drug's dissolution, distribution and availability. N-octanollwater partition coefficients were determined at pH 6.4. Solubilities in water, a series of n-alcohols and mixed solvents were obtained, as well as the solubility parameters of the compounds in study. Secondly, in vitro permeation studies were performed from these solvents and vehicles using vertical Franz diffusion cells with human epidermal membranes. Thirdly, tumour necrosis factor-alpha (TNF-a) inhibition activities were assessed for thalidomide and its N-alkyl analogues. By adding a methyl group to the thalidomide structure, the melting point drops by over 100°C and, in this particular instance upon increasing the alkyl chain length to five -CH2- units the melting points decrease linearly. Heats of fusion decreased dramatically upon thalidomide's alkylation as well. Methylation of the thalidomide molecule enhanced the aqueous solubility 6-fold, but as the alkyl chain length is further extended from methyl to pentyl, the aqueous solubility decreased exponentially. The destabilization of the crystalline structure with increasing alkyl chain length led to an increase in lipophilicity and consequently an increase in solubility in nonpolar media. Log partition coefficients increased linearly with increasing alkyl chain length. Solubilities in a series of n-alcohols, methanol through dodecanol, were found to be in the order of pentyl > propyl > methyl > thalidomide. The N-alkyl analogues have more favourable physicochemical properties than thalidomide to be delivered percutaneously. The in vitro skin permeation data proved that the analogues can be delivered far easier than thalidomide itself. N-methyl thalidomide showed the highest steady-state flux through human skin from water, n-alcohols and combination vehicles. Thalidomide and its N-alkyl analogues were all active as TNF-a inhibitors. Finally, active as a TNF-a inhibitor, N-methyl thalidomide is the most promising candidate to be delivered percutaneously for treatment of rheumatoid arthritis, of those studied. / Thesis (PhD (Pharmaceutics))--PU for CHE, 1999.
314

Experimental Determination And New Correlations For Multi-Component Solid Solubilities In Supercritical Carbon Dioxide

Reddy, N Siva Mohan 10 1900 (has links) (PDF)
The fluids that are operated above their critical temperature and pressure are known as supercritical fluids (SCFs). SCFs replaces the conventional organic solvents in the chemical processes due to their attractive properties such as liquid like densities, gas like diffusivities, negligible surface tension, lower viscosity and high compressibility. Carbon dioxide, being non-toxic, non-flammable with ambient critical temperature and moderate critical pressure, is the most widely used SCF in many chemical processes. Supercritical carbon dioxide (SCCO2) finds applications in industrial processes such as extraction and separation processes. The feasibility of a supercritical process can be determined from the solubility of solute in SCF. For the efficient design of a SCF process, the effects of temperature and pressure on the solubility of a solid should be examined thoroughly. In general, the solute of interest is not present alone; it is present along with many other components in the compound. The solute has to be extracted or separated from matrix of components. Therefore, it is important to determine the mixture solubilities in SCCO2. The mixture solubility of a solute is not same as that of pure component solubility. The presence of the other component alters the solubility of the solute to a greater extent; hence the effects of the other components present along with the solute, temperature and pressure need to be known to understand the mixture behavior of the solute in SCCO2. The solubilities of solid isomers (ortho-, meta-, para-) in SCCO2 vary to a greater extent. This huge difference in the solubilities of isomers is due to interactions between the molecules. The high solubility of an isomer in SCCO2 might be due to the solute-solvent interactions. The interactions between the molecules are significant in the solid mixtures solubilities in SCCO2. This research work focuses on experimental determination and modeling of mixture solubilities of solids in SCCO2. The solubilities of several pairs of isomers have been experimentally determined at different temperatures and pressures. These include the ternary solubilities of ntrophenols, nitrobenzoic acids and dihydroxy benzene isomers mixtures in SCCO2. The experimental solubilities of nitrophenol (meta- and para-) isomers mixture have been determined. This study includes the effect of temperature, pressure and each isomer on the ternary mixture solubilities of nitrophenol mixtures. The enhancements in the ternary solubilities of nitrophenols over their binary solubilities and the selectivity of SCCO2 for the nitrophenol mixture have been discussed in detail. The solubilities of dihydroxy benzene (ortho-: pyrocatechol, meta- : resorcinol and para-: hydroquinone) isomers in SCCO2 have been determined at various temperatures and pressures. The ternary solubilities of pyrocatechol and resorcinol and quaternary solubilities of pyrocatechol, resorcinol and hydroquinone mixtures in SCCO2 have been investigated. The effect of each isomer on the mixture solubilities of other isomers has been included in this work. Selectivity for dihydroxy benzene isomers and variation of solubilities enhancements with temperature and pressure has been presented in this study. The equilibrium mixture solubilities of nitrobenzoic acid isomers (meta- and para) mixture have been studied. The variation of mixture solubilities and their enhancements with temperature and pressure has been thoroughly analyzed. Selectivity of SCCO2 for this nitrobenzoic acid mixture has been studied in detail. The increase or decrease in the ternary solubilities of the solid mixtures that have been considered in this study is due to the interactions between the molecules. The ternary solubilities of m-nitrophenol increase whereas they decrease for pnitrophenol for the nitrophenol solid mixture. Quaternary solubilities of dihydroxy benzene isomers (pyrocatechol + resorcinol + hydroquinone) increases compared to their pure component solubilities. The ternary solubilities of pyrocatechol increases while resorcinol decreases over the pressure range at different temperatures (except 338 K) considered in this study. The mixture solubilities of p-nitrobenzoic acid of nitrobenzoic acid isomers increase to a greater extent. An average of separation efficiency of 70%, 85% and 90% has been observed for ternary solid mixtures of nitrophenol, nitrobenzoic acid and dihydroxy benzene isomers respectively. Modeling of high pressure multi-component systems is useful to understand the behavior of the mixtures. Moreover, the experimental determination of multicomponent solubilities of solids in SCCO2 is tedious and time consuming; hence the modeling of mixture solubilities is essential. The interactions between the molecules have been incorporated in the association theory and a five parameter equation with two constraints has been derived for binary systems. The new equation correlates the solubilities of m-dinitrobenzene in this study along with 72 other systems available in literature. Seven new model equations have been developed to correlate ternary (2 for cosolvent (solid + cosolvent + SCCO2) systems; 5 for solid mixtures in SCCO2) solubilities of solids in SCCO2. A new model equation for cosolvent ternary systems has been derived by using the concepts of association of molecules. The model equation contains seven adjustable parameters with three constraints and correlates mixture solubilities in terms of temperature, pressure, density and cosolvent composition. The interactions between the molecules have been included in the association theory then the number of parameters decreased to five with two constraints. The performance of the newly developed equations has been evaluated for 32 ternary systems with various cosolvents along with experimental data of mdinitrobenzene in methanol cosolvent of this study. The same association theory has been extended to ternary (solid mixtures + SCCO2) solubilities of solids in SCCO2 and two new equations have been derived with and without incorporating interactions between the molecules. Both the equations have five adjustable parameters with three constraints for the equation which has been derived from association theory alone and two constraints for the equation which has been derived by considering the interactions between the molecules in the association theory. A new model equation has been derived by combining solution model with Wilson activity coefficient model to account for nonidealities of the solute. This equation has four adjustable parameters and no constraints on the parameters. The non-idealities of both solutes in the solution model have been included and two more equations with no constraints on the parameters have been developed. One equation uses NRTL activity coefficient model which results in three adjustable parameters while the other equation with five parameters has been obtained from Wilson activity coefficient model for solid mixtures solubilities in SCCO2. The performance of the newly developed equations has been evaluated for the solid mixtures (ternary systems) in SCCO2. The equations with constraints make them limited for few systems and the equations with no constraints are able to correlate the solubilities of solids of all the ternary systems that are available in literature along with the generated ternary experimental data of this study. The quaternary solubilities of solids have been correlated by using a five parameter model equation which has been derived by combining solution and Wilson activity coefficient models. The equation for the quaternary systems does not have constraints on the parameters; hence can be applied for quaternary systems. The equation correlates the quaternary solubilities of solids in terms of temperature, pressure, density and cosolute compositions. Chapter 1 gives a brief introduction on the solubilities of solid mixtures and their behavior in SCCO2. Chapter 2 presents the experimental setup and the solubility data of binary, ternary and quaternary systems determined in this study. Chapter 3 focuses on the models that have been derived to correlate the solubilities of solids in SCCO2. Chapter 4 discusses in detail about the results obtained in this research work. Chapter 5 briefly summarizes the work and presents major conclusions. The new equations that have been developed here are first of its kind for the ternary and quaternary systems. These equations give information about the nonidealities of the systems. The nature of the interactions between the molecules can be determined from the parameters of the equations which incorporate interactions between the molecules. The multi-component solubilities of the solids can be correlated by using the semi-empirical equations that have been derived in this research.
315

Development, characterization and evaluation of crystalline nanoparticles for enhancing the solubility, the dissolution rate and the oral bioavailability of poorly water-soluble drugs

Hecq, Jérôme 17 November 2006 (has links)
When considering oral administration, drug release from its pharmaceutical form and its dissolution into gastrointestinal fluids generally precedes absorption and systemic availability. The solubility-dissolution behaviour of a drug is frequently the rate-limiting step to absorption of drugs from the gastrointestinal tract (BCS class II drugs). Poor aqueous solubility has always been a very challenging obstacle as it is, together with membrane permeability, an essential factor in the limitation of a drug’s bioavailability following oral administration. Since an increasing number of newly developed drug candidates in pre-clinical development phases present poor water-solubility characteristics, there is a great need for formulation approaches to overcome this factor.<p><p>Out of the many ways to increase a product’s solubility/dissolution rate characteristics with the aim of enhancing its oral bioavailability, drug formulation as nanoparticles has received much-increased interest over the last decade. The hypothesis behind dissolution rate enhancement, considering drug particle size reduction to nanometer range, lies primarily in a much-increased effective surface area (Noyes-Whitney) presented by the resulting drug nanoparticles. Out of the various technologies available for drug particle size reduction to nanometer range, milling using high pressure homogenization is regarded as one of the simplest and most effective techniques. High pressure homogenization is a solvent-free process and is relatively rapid (time-saving). Furthermore, and most importantly, the scaling up of this technique is already established; processing capacities ranging from 3 l/h (e.g. EmulsiFlex C3®: minimum sample volume - 10 ml) to 1000 l/h (e.g. EmulsiFlex C1000®: minimum sample volume - 2 l).<p><p>Four model drugs were studied in this work. Nifedipine (NIF), an extensively studied poorly water-soluble drug in the literature, was used as the main model on which most of the development was done. In parallel to the work carried out on NIF, three UCB S.A. molecules currently under development were also studied as poorly water-soluble drugs: these being ucb-35440-3, UCB-A and UCB-B (salt of UCB-A). These three UCB S.A. model drugs are, contrarily to NIF, predicted highly dosed drugs and are weak bases, and thus present pH-dependent solubility profiles, which allowed us to investigate model drugs with different profiles.<p><p>Firstly, investigations regarding appropriate formulation development (stabilizer (surfactant) selection) and appropriate high pressure homogenization operating conditions (pre-milling cycles, influence of the number of high pressure homogenizing cycles, influence of homogenizing pressure, influence of sample temperature) were made. It has been shown, through this development, for the four studied model drugs, that high pressure homogenization is an appropriate technique for reducing drug particle size to nanometer range (NIF &61566; 290 nm, ucb-35440-3 &61566; 180 nm, UCB-A &61566; 350 nm and UCB-B &61566; 250 nm). Investigations regarding water-removal from the nanosuspensions obtained and most importantly regarding the redispersion characteristics of the retrieved powders (i.e. nanoparticles) were then carried out. In that regard, it has been shown that the presence of carriers in the formulation is essential for limiting nanoparticles agglomeration during the water-removal operation.<p><p>Drug crystalline state characterizations before and following particle size reduction were then carried out on the three studied model drugs, mainly through DSC and PXRD studies. In fact, one of the advantages of this particle size reduction approach (using high pressure homogenization), versus other frequently studied solubility/dissolution rate enhancement technologies (e.g. such as solid dispersions), is that original crystalline state shall not be altered in such a way that the achieved increased solubility and dissolution rate characteristics do not rely on the presence of the amorphous form of the drug; this furthermore implying a greater time-stability of the developed formulations. Through the data obtained, it has been shown that original drug crystalline state seems to be unaltered following particle size reduction.<p><p>In vitro solubility and dissolution characteristics were then evaluated on the formulations developed in order to verify the posed hypothesis regarding effective surface area increase. It has been shown through these studies that drug solubility and most importantly drug dissolution rate can be significantly enhanced for nanoparticulate systems (verified for NIF, ucb-35440-3, UCB-A and UCB-B). For example, solubility was enhanced from 26 µg/ml vs. 19.5 µg/ml for NIF nanoparticles and the dissolution characteristics showed that 100% of the tested dose (equivalent to 10 mg NIF) was already dissolved following 10 min vs. less than 5% for un-milled NIF. Following these very interesting and promising results, and preliminary to the in vivo pharmacokinetic studies carried out, in vitro permeation studies (apical to basolateral transfer studies) across intestinal cell models (Caco-2 and HT29-5M21 cultures and co-cultures) were carried out. This evaluation was only carried out using NIF as a model drug and showed a 6-fold increase in the permeation rate for NIF nanoparticles. The influence of chitosan (permeability enhancer/bioadhesive polymer) in the NIF nanoparticle formulation with regard to in vitro NIF permeation rate was also evaluated.<p><p>In vivo pharmacokinetic studies in rats were conducted using NIF and ucb-35440-3 as model drugs. The very different profiles of these two model drugs allowed us to retrieve interesting information regarding the in vivo behaviour of the developed formulations. As expected from the in vitro (i.e. solubility/dissolution/permeation) studies and results obtained for NIF, an increased extent of exposure could be observed for NIF nanoparticles versus un-milled NIF; the difference being more pronounced when the formulations were orally administered into capsules (2.5-fold increase in extent of exposure and 6-fold increase in Cmax). For ucb-35440-3, a poorly water-soluble weak base with a reported significant food effect considering oral bioavailability, an increased extent of exposure for nanoparticles, versus the un-milled drug, could only be observed in fasted state (4-fold increase in extent of exposure and 2.7-fold increase in Cmax). These different, diet-relative observations allowed us to put forward some limitations and precautions (considering poorly water-soluble weak bases) relative to the possibility of drug reprecipitation following stomach’s exiting, particularly if dissolution in the stomach is quite fast (e.g. nanoparticulate systems).<p><p>In parallel to the in vivo pharmacokinetic evaluation of NIF nanoparticles, evaluation of the antihypertensive effect of the systems developed following oral administration, using spontaneously hypertensive rats, was also carried out and compared to un-millled NIF. The results obtained showed a significant drop in systolic blood pressure for NIF nanoparticles (32% reduction of initial SBP following 30 min vs. 1% for un-milled NIF) and nicely complemented the in vitro and in vivo results obtained for NIF nanoparticles.<p><p>Finally, a stability study of the optimized NIF nanoparticle formulation was carried out with respect to reported ICH conditions (25°C/60% RH; 30°C/65% RH; 40°C/75% RH). The results showed that the studied NIF nanoparticle formulation retains all its original characteristics (dissolution, crystalline state, redispersion characteristics); this being verified over time (12 months) and for each of the three storage conditions studied.<p> / Doctorat en sciences pharmaceutiques / info:eu-repo/semantics/nonPublished
316

Formulation and evaluation of amorphous clarithromycin tablets for enhanced dissolution

Mongalo, Sello Herlot January 2022 (has links)
Thesis (M. Pharmacy ((Pharmaceutics)) -- University of Limpopo, 2022 / According to the biopharmaceutical classification system, Clarithromycin is considered a class II molecule with low solubility. Poorly soluble drugs result in low bioavailability. Various techniques have been studied to improve the solubility of drugs and subsequently bioavailability. Of these techniques, preparation of amorphous form is the preferred method because it is a more effortless and convenient way to improve the aqueous solubility and dissolution of poorly water soluble drugs. The only disadvantage of amorphous materials is that they are less thermodynamically stable and can recrystallize during processing and storage. Aim: The aim of this study is to prepare amorphous form of clarithromycin to improve its solubility, dissolution rate, and, subsequently, bioavailability. Methods: In this study, preparation of amorphous form of clarithromycin was conducted using the quench cooling method in which the purchased anhydrous crystalline clarithromycin was spread on an aluminum foil and heated to a melting point (217˚C - 220˚C) and then rapidly cooled. Various techniques were conducted to characterize the prepared amorphous clarithromycin, and these include Differential Scanning Calorimetry (DSC), Fourier-Transform Infrared Spectroscopy (FTIR), and X-Ray Powder Diffraction (XRPD). In addition, tablets were formulated using the amorphous clarithromycin mixed with selected excipients from compatibility studies, and in vitro dissolution and stability studies were conducted over a period of 6 months. Results: The DSC thermogram results confirmed that the material prepared using the quench cooling process is an amorphous solid-state. Furthermore, the XRPD confirmed an amorphous solid-state with scattering halo peaks. The FTIR also depicted some broader and lower intensity peaks that indicated a formation of an amorphous material. The dissolution rate of amorphous clarithromycin tablets improved by more than 30% when compared to commercial crystalline clarithromycin tablets. The study revealed a drop in dissolution rate at months 3 to 6 under accelerated conditions due to recrystallization. The 6 monthly stability study at long term conditions showed no change in the integrity of the tablets and their contents. Conclusion: As indicated by the study, it can be concluded that the amorphous clarithromycin remained stable during processing and storage under long-term stability for 6 months. Furthermore, based on dissolution results, it can be concluded that amorphous solids have an improved dissolution rate. / Medical Research Council CHIETA
317

Solubility and phase transitions in batch and laminar-flow tubular crystallizers

Mendez del Rio, Jose R. 03 December 2004 (has links)
The research addressed in this thesis focuses on monitoring and characterization of pharmaceutical compounds by laser backscattering. In particular, this study covers two topics: (1) the determination of naproxen sodium solubility in water, and its phase transition; and (2) comparisons of batch and laminar flow tubular crystallizers for the production of paracetamol (acetaminophen) and D-mannitol. Using a Lasentec™ Focused Beam Reflectance Measurement (FBRM) device, the solubility of naproxen sodium in aqueous solutions was determined over a temperature range from 15.2 to 39.7 ℃ With the determination of the solubilities of two pseudopolymorphs, anhydrous and dihydrated naproxen sodium, the phase transition point between these two forms of the pharmaceutical compound was determined to occur at 30.3 ℃ Enthalpy of solution and metastable zone widths were also determined for the experimental conditions. Crystallizations of paracetamol and D-mannitol were performed in a batch crystallizer and in a laminar flow tubular crystallizer (LFTC) system. In the latter system, supersaturation was generated rapidly in the solution being transported through a temperature-controlled tube and recovered in a batch vessel where product crystals were grown to equilibration. Because of the rapid rate at which supersaturation was generated in the LFTC, the resulting crystals were of smaller mean size than those obtained from batch crystallizations. The total time required for crystallization was significantly less with the LFTC than with the batch unit. Additionally, the rapid cooling in the LFTC led to the formation of two different polymorphs of paracetamol, Forms I and II.
318

Crystallization Fields of Polyhalite and its Heavy Metal Analogues / Existenzgebiete des Polyhalits und seiner schwermetallhaltigen Analoga

Wollmann, Georgia 14 May 2010 (has links) (PDF)
Polyhalite is an abundant distributed mineral in rock salt formations, and considered to respond as a natural heavy metal sink because the Mg2+ ion can be substituted by other bivalent metal ions like Mn2+, Co2+, Ni2+, Cu2+ and Zn2+. One of the quantities needed to predict mineral solubilities in multi-electrolyte solutions is the solubility constant Ksol. Since polyhalite forms slowly over months or years at 298 K, the solid-liquid phase equilibria experiments were accomplished at 313 K. Enthalpies of dissolution were measured and used to extrapolate lnKsol from 313 K to 298 K. Pitzer’s equations have been applied to describe activities of solute and water, with Pitzer parameters estimated from experimental data. The solubility constants for the polyhalites were applied to calculate the solubility equilibria in the quaternary systems K+, M2+, Ca2+ / SO42- // H2O (M = Mg, Mn, Co, Cu, Zn) at 298 K and 313 K, and in case of Mg-polyhalite also in the hexary system Na+, K+, Mg2+, Ca2+ / Cl-, SO42- // H2O.
319

Development of Non-Amorphous Solid Dispersions for Poorly-Soluble Drugs Using a Novel Excipient and Hot Melt Extrusion

Hwee Jing Ong (5930108) 16 January 2020 (has links)
<div>Drug solubility is a persistent challenge in pharmaceutical product development. The objective of this research is to develop a formulation/processing strategy by means of a biodendrimeric solid dispersion (BDSD) platform, for increasing the solubility and dissolution rate of poorly water-soluble drugs. The BSDS platform combines a novel type of excipient, referred to as DLB, with a new application of the hot melt extrusion (HME) process.</div><div><br></div><div>Four model compounds – phenytoin (PHT), griseofulvin (GSF), ibuprofen (IBU), and loratadine (LOR) – were used to evaluate the solubilization effect of an octenylsuccinate-modified dendrimer-like biopolymer (OS-DLB). Shake-flask solubility measurements show that OS-DLB exerts significant solubilizing effect when present at less than 0.2% in water. The presence of hydrophobic C<sub>8</sub> chains on OS-DLB creates the type of favorable nonpolar microenvironment necessary for producing a parallel liquid phase equilibrium responsible for the increase in the total amount of drug dissolved in aqueous media. The higher the hydrophobicity of the drug, the higher the observed solubilization effect. Isothermal titration calorimetry studies show that drug solubilization by OS-DLB occurs by means of entropy-driven interactions. These studies also show that the intermolecular interaction between IBU and OS-DLB in solution exhibits very small energy change upon mixing but a stronger effect on entropy. In comparison, the intermolecular interaction between the less hydrophobic GSF and OS-DLB have significant effects on both enthalpy and entropy. Consequently, in terms of solubilization enhancement, it was found that the interaction between IBU and OS-DLB is entropy-driven (more favorable), while in the case of GSF, the interacting molecules are arranged to maximize enthalpic interaction.</div><div><br></div><div>Based on the solubility studies, a formulation/processing approach for enhancing the dissolution rate of the model drugs was developed. The biopolymer serving as both carrier and solubilizing agent, was coprocessed with poloxamer, functioning as a processing aid, using hot melt extrusion (HME) as an enabling technology. The result is a non-amorphous solid dispersion, exhibiting high and long-lasting supersaturation upon dissolution. A 3-factor, 3-level Box-Behnken design was implemented to define the optimal design space for the formulation/extrusion process. The results obtained from multivariate data analysis (partial least squares and principal components analysis) and response surface modeling suggest that drug release performance of IBU BDSDs is strongly influenced by the processing variables, while maximum release of GSF from the BDSDs can be attained through selective combination of functional excipients.<br></div>
320

Crystallization Fields of Polyhalite and its Heavy Metal Analogues

Wollmann, Georgia 05 March 2010 (has links)
Polyhalite is an abundant distributed mineral in rock salt formations, and considered to respond as a natural heavy metal sink because the Mg2+ ion can be substituted by other bivalent metal ions like Mn2+, Co2+, Ni2+, Cu2+ and Zn2+. One of the quantities needed to predict mineral solubilities in multi-electrolyte solutions is the solubility constant Ksol. Since polyhalite forms slowly over months or years at 298 K, the solid-liquid phase equilibria experiments were accomplished at 313 K. Enthalpies of dissolution were measured and used to extrapolate lnKsol from 313 K to 298 K. Pitzer’s equations have been applied to describe activities of solute and water, with Pitzer parameters estimated from experimental data. The solubility constants for the polyhalites were applied to calculate the solubility equilibria in the quaternary systems K+, M2+, Ca2+ / SO42- // H2O (M = Mg, Mn, Co, Cu, Zn) at 298 K and 313 K, and in case of Mg-polyhalite also in the hexary system Na+, K+, Mg2+, Ca2+ / Cl-, SO42- // H2O.

Page generated in 0.0405 seconds