• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Problem with Errors : Solution Search in Platform Development / Problemet med Fel : Lösningssökande i plattformsutveckling

Yakob, Ramsin January 2009 (has links)
This dissertation is concerned with problem-solving in platform development. A problem isconceived of as an obstacle that needs to be overcome in order to reach a desired outcome,whereas a solution is denoted by the set of activities required to reach such an outcome. Aplatform is conceived of as the technological foundation made up of a number of elements thatare purposely planned and developed to form a common structure from which a stream ofderivative products can be developed. Problem-solving in platform development is a non-trivialtask since platforms need to cater for both commonality and distinctiveness across a number ofderivative products. Further, several design architectures are intertwined in the development ofplatforms, giving rise to increased complexity. The purpose of this dissertation is to exploreplatform development from a problem-solving perspective, with the purpose of answering whatproblem-solving activities are carried out in platform development processes, how are differentapproaches to the search for solutions related to problem-solving in platform development, andhow can problem-solving in platform development be conceptualized? This dissertation is basedon two empirical studies of platform development processes from the telecommunication andautomotive industry, and draws upon a qualitative research methodology. The result of this studyis an iterative and dynamic model of solution search in problem-solving. This dissertationimplies a distinction between problems and errors in platform development. Solution searchemerge as a matter of choice of whether to engage in problem-solving activities and/or errorcorrection activities during the development of platforms. Solution search also surface as anintermingled process of search for required inputs, outputs, or governing laws (i.e. solutions) forreaching a desired goal. In this process, analytical search, directional search, and synthesizedsearch and the facilitation and management of both feed-back and feedforward is important. / Denna avhandling berör problemlösning i plattformsutvecklingsprocesser. Ett problem avser etthinder som måste övervinnas för att nå ett önskat resultat, medan en lösning betecknas med deaktiviteter som krävs för att nå ett sådant resultat. Med plattform avses den teknologiska grund,bestående av ett antal element, som är avsiktligt planerade och utvecklade för att bilda engemensam struktur via vilken en ström av olika produkter kan utvecklas. Problemlösning iutvecklandet av plattformar är en icke-trivial uppgift eftersom plattformar måste tillgodose bådegemensamhet och särprägel i ett antal produkter. Vidare så är flera designarkitekturersammanflätade i utvecklandet av plattformar, vilket ger upphov till ökad komplexitet. Syftet meddenna avhandling är att undersöka plattformsutveckling från ett problemlösningsperspektiv, isyfte att svara på vilka problemlösningsaktiviteter som bedrivs i plattformutvecklingsprocesser,hur olika strategier för att söka efter lösningar i samband med problemlösning iplattformsutveckling är relaterade till varandra, samt hur problemlösning i plattformsutvecklingkan föreställas. Denna avhandling bygger på två empiriska studier av plattformsutvecklingsprocesseri telekommunikation och fordonsindustrin, och bygger på en kvalitativforskningsmetodik. Resultatet av denna undersökning är en iterativ och dynamisk modell förlösningsökning. Denna avhandling föreslår en skillnad mellan ett problem och ett fel iutvecklandet av telekommunikationsplattformar och fordonsplattformar. Lösningssökandeframstår som ett val mellan att engagera sig i problemlösning eller/och felkorrigering underutvecklandet av plattformar. Lösningssökande framstår också som en sammansmält process avsökande efter nödvändig input, output och de styrande lagar (dvs. lösningar) för att nå ett önskatmål. I denna process är analytisk sökande, riktat sökande, syntetiserad sökande, ochförvaltningen av både återkoppling och framåtkopplingning viktig.
2

Learning to compare nodes in branch and bound with graph neural networks

Labassi, Abdel Ghani 08 1900 (has links)
En informatique, la résolution de problèmes NP-difficiles en un temps raisonnable est d’une grande importance : optimisation de la chaîne d’approvisionnement, planification, routage, alignement de séquences biologiques multiples, inference dans les modèles graphiques pro- babilistes, et même certains problèmes de cryptographie sont tous des examples de la classe NP-complet. En pratique, nous modélisons beaucoup d’entre eux comme un problème d’op- timisation en nombre entier, que nous résolvons à l’aide de la méthodologie séparation et évaluation. Un algorithme de ce style divise un espace de recherche pour l’explorer récursi- vement (séparation), et obtient des bornes d’optimalité en résolvant des relaxations linéaires sur les sous-espaces (évaluation). Pour spécifier un algorithme, il faut définir plusieurs pa- ramètres, tel que la manière d’explorer les espaces de recherche, de diviser une recherche l’espace une fois exploré, ou de renforcer les relaxations linéaires. Ces politiques peuvent influencer considérablement la performance de résolution. Ce travail se concentre sur une nouvelle manière de dériver politique de recherche, c’est à dire le choix du prochain sous-espace à séparer étant donné une partition en cours, en nous servant de l’apprentissage automatique profond. Premièrement, nous collectons des données résumant, sur une collection de problèmes donnés, quels sous-espaces contiennent l’optimum et quels ne le contiennent pas. En représentant ces sous-espaces sous forme de graphes bipartis qui capturent leurs caractéristiques, nous entraînons un réseau de neurones graphiques à déterminer la probabilité qu’un sous-espace contienne la solution optimale par apprentissage supervisé. Le choix d’un tel modèle est particulièrement utile car il peut s’adapter à des problèmes de différente taille sans modifications. Nous montrons que notre approche bat celle de nos concurrents, consistant à des modèles d’apprentissage automatique plus simples entraînés à partir des statistiques du solveur, ainsi que la politique par défaut de SCIP, un solveur open-source compétitif, sur trois familles NP-dures: des problèmes de recherche de stables de taille maximum, de flots de réseau multicommodité à charge fixe, et de satisfiabilité maximum. / In computer science, solving NP-hard problems in a reasonable time is of great importance, such as in supply chain optimization, scheduling, routing, multiple biological sequence align- ment, inference in probabilistic graphical models, and even some problems in cryptography. In practice, we model many of them as a mixed integer linear optimization problem, which we solve using the branch and bound framework. An algorithm of this style divides a search space to explore it recursively (branch) and obtains optimality bounds by solving linear relaxations in such sub-spaces (bound). To specify an algorithm, one must set several pa- rameters, such as how to explore search spaces, how to divide a search space once it has been explored, or how to tighten these linear relaxations. These policies can significantly influence resolution performance. This work focuses on a novel method for deriving a search policy, that is, a rule for select- ing the next sub-space to explore given a current partitioning, using deep machine learning. First, we collect data summarizing which subspaces contain the optimum, and which do not. By representing these sub-spaces as bipartite graphs encoding their characteristics, we train a graph neural network to determine the probability that a subspace contains the optimal so- lution by supervised learning. The choice of such design is particularly useful as the machine learning model can automatically adapt to problems of different sizes without modifications. We show that our approach beats the one of our competitors, consisting of simpler machine learning models trained from solver statistics, as well as the default policy of SCIP, a state- of-the-art open-source solver, on three NP-hard benchmarks: generalized independent set, fixed-charge multicommodity network flow, and maximum satisfiability problems.

Page generated in 0.2165 seconds