• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Understanding Oil Resistance of Nitrile Rubber: CN Group Interactions at Interfaces

Lachat, Veronique M. 17 December 2008 (has links)
No description available.
2

Synthesis and Characterization of Wholly Aromatic Semicrystalline Polyimides Based Upon Bis(4-Aminophenoxy) Benzenes

Graham, Marvin Jerome 22 January 1999 (has links)
Semicrystalline thermoplastic polyimides based upon bis(4-aminophenoxy)benzene and related "triphenyl ether" diamines were synthesized via the classical two step amic acid route. More specifically, polyimides were derived from para linked 1,4-bis(4-aminophenoxy)benzene, or TPEQ (triphenyl ether diamine- hydroquinone) and its meta isomer 1,3-bis(4-aminophenoxy)benzene, or TPER (triphenyl ether diamine-resorcinol). The reaction of these diamines with rigid or semi-rigid dianhydrides such as pyromellitic dianhydride (PMDA), biphenyl dianhydride (BPDA), and oxydiphthalic anhydride (ODPA) yields very thermally stable semi-crystalline polymers which have excellent resistance to organic liquids. Amorphous polyimides could be derived from hexafluoroisopropylidene-linked diphthalic anhydride (6FDA), but these systems were not extensively investigated. Importantly, molecular weight characterization of the semicrystalline systems at the soluble amic acid stage was successful by employing hydrodynamic volume calibrated, viscosity detector size exclusion chromatography (SEC). The experimental values were found to be within the targeted <M<sub>n</sub>> range of 20-30,000 g/mole. Polyimide powders derived from these ether diamines were prepared by solution imidization at 180°C, to afford about 70% imidized structures as judged by dynamic thermal gravimetric analysis (TGA), before crystallization/precipitation occurred. Relatively small particle sizes ranging from 2 to 25 μm in size were generated, which would be appropriate for thermoplastic polymer matrix composites prepared by powder processing. All specimens showed excellent thermooxidative stability, consistent with the aromatic imide structure. The molecular design of the aromatic polyetherimide repeat unit was critical for the successful utilization of these semicrystalline high performance materials. The metba-linked TPER system when combined with the thermally stable s-biphenyl dianhydride (BPDA) produced a melting endotherm, T<sub>m</sub>, at about 395°C, which was well within the thermal stability limitations of organic materials, i.e., less than or approximately 450°C. It was also demonstrated to be important to quantitatively endcap both ends of the chains at about 20-30,000 <M<sub>n</sub>> with non-reactive phthalimide groups to achieve appropriate melt viscosities and good melt stability. This was done by off-setting the stoichiometry in favor of the diamine, reacting with a calculated amount of phthalic anhydride and imidizing in bulk above the Tg (≈210°C) at 300°C. These considerations allowed for remarkable melt stability in nitrogen at 430°C for at least 45 minutes, and importantly, repeated recrystallizations from the melt to afford tough, ductile semicrystalline films with excellent solvent resistance. If the macromolecular chains were not properly endcapped, it was demonstrated that viscosity increased rapidly at 430°C, suggesting reactions such as transimidization involving terminal amine end groups with in-chain imide segments and/or other side reactions, which quickly inhibited recrystallization, probably by reducing molecular transport processes. In contrast, polyimides based upon the more rigid para-linked TPEQ did not demonstrate melt or flow characteristics below 400°C, and degraded around the T<sub>m</sub> at about 470°C! The less thermally stable TPEQ-ODPA based polyimide did melt around 409°C, and lower molecular weight samples, e.g., 10,000 M<sub>n</sub>, recrystallized from the melt after short melt times, but cast films were brittle. It was hypothesized that the weak link may be the relatively electron rich arylene ether bond derived from the ODPA dianhydride. Several alkylated derivatives of TPER were synthesized in good yield by the reactions of alkylated resorcinol precursors with p-fluoronitrobenzene to produce dinitro compounds, which were subsequently reduced. These model diamines were then used to synthesize polyimides by the classical two step route. As expected, few of the polyimides derived from BPDA and these diamines displayed melting transitions (T<sub>m</sub>), probably because of poor chain packing. However, they could have potential as new thermally stable membrane materials. Several amorphous polyimides prepared from 1,3-bis(p-aminophenoxy)-4-hexylbenzene were soluble in selected common organic solvents and could be cast into flexible films. / Ph. D.
3

Surface-Bonded Sol-Gel Sorbents for On-Line Hyphenation of Capillary Microextraction with High-Performance Liquid Chromatography

Segro, Scott S 24 March 2010 (has links)
High-performance liquid chromatography (HPLC) is the most widely used analysis technique. However, its sensitivity is limited. Sample preconcentration methods, such as fiber-based solid-phase microextraction (SPME) and in-tube SPME (capillary microextraction) offer improved detection limits. It is, however, difficult to couple fiber SPME on-line with HPLC due to the need for complicated desorption devices. Such coupling is further complicated due to the limited solvent stability of the extracting phase both in the fiber and in-tube formats of SPME. In this research, surface-bonded sol-gel sorbents were developed to provide the solvent stability required for effective on-line hyphenation of capillary microextraction (CME) with HPLC. These sol-gel sorbents were prepared using (1) silica-based, (2) titania-based, and (3) germania-based sol-gel precursors. Sol-gel reactions were performed within fused silica capillaries to create a number of organic-inorganic hybrid sorbents in the form of surface-bonded coatings: (1) alkyl (methyl, octyl, octadecyl), (2) polydimethyldiphenylsiloxane, (3) titania poly(tetrahydrofuran), and (4) germania tri-block polymer. The sol-gel coated microextraction capillaries were capable of efficiently extracting a wide variety of analytes, including polycyclic aromatic hydrocarbons, ketones, aldehydes, aromatic compounds, amines, alcohols, and phenols with ng/L to pg/L detection limits. The sol-gel methyl coating demonstrated a counterintuitive ability to extract polar analytes. Sol-gel polydimethyldiphenylsiloxane coatings were found to be resistant to high temperature solvent exposure (150°C and 200°C), making them suitable for use in high-temperature liquid phase separations. To better understand how extraction takes place, effects of alkyl chain length and sol-gel precursor concentration were evaluated in the study on sol-gel alkyl coatings. The sol-gel titania poly(tetrahydrofuran) coating was also capable of extracting underivatized aromatic acids and polypeptides at pHs near their respective isolectric points. The sol-gel titania poly(tetrahydrofuran) coatings and the sol-gel germania tri-block polymer coatings demonstrated impressive resistance to extreme pH conditions, surviving prolonged exposure to 1.0 M HCl (pH approx. 0.0) and 1.0 M NaOH (pH approx. 14.0) with virtually no change in extraction behavior. Sol-gel germania tri-block polymer coatings were also stable under high temperature solvent conditions (200°C). In addition, for the first time, the analyte distribution constants between a sol-gel germania coating and the aqueous samples (Kcs) were determined.
4

Quartz Crystal Microbalance with Dissipation Monitoring Applications in Polymer Thin Films Analysis

Liu, Gehui 25 January 2022 (has links)
Natural and synthetic polymers are highly related to people's daily life in every perspective and determine everyone's life quality. This study investigated the interactions between polymer thin films and other molecules, specifically natural polymer films with other components in plant and fungal cell walls, crosslinked thermoplastic films with solvent molecules, as well as commodity thermoplastic films with air and moisture during aging by a powerful surface analysis instrument, a quartz crystal microbalance with dissipation monitoring (QCM-D). The assembly and interactions of glucan and chitin are crucial for understanding the fungal infection mechanism. Adsorption of mixed-linkage glucan (MLG) onto regenerated chitin (RChitin) and cellulose (RC) surfaces were investigated by QCM-D and atomic force microscopy (AFM). MLG was irreversibly adsorbed onto both surfaces and formed soft hydrogel-like layers with viscoelastic properties. This work established a QCM-D method to mimic the assembly of natural polymers in fungal cell walls and provided insight into the interactions of these polymers with chitin and cellulose. Poly(ether imide) (PEI) has poor solvent resistance towards solvents including chloroform, dimethylformamide (DMF), dichloromethane (DCM), and N-methyl pyrrolidone (NMP). Exposure to these solvents severely affects the thermal and mechanical performances of PEI. Therefore, crosslinked PEI (X-PEI) films was prepared from azide-terminated PEI (N₃-PEI-N₃) via a thermal crosslinking reaction. X-PEIs maintain outstanding solvent resistance towards common solvents by swelling ratio tests using QCM-D. Meanwhile, the thermal and mechanical properties of X-PEI were enhanced compared to the original PEI. Photo-oxidation is one of the dominant degradation mechanisms affecting the lifespan of polymers. The effect of photooxidative aging on the physiochemical properties of low-density polyethylene (LDPE) films were investigated using QCM-D, differential scanning calorimetry (DSC), and tensile stress-strain tests. The crystallinity, mechanical properties, and weight loss were correlated to understand the aging behavior. Materials after aging showed higher tensile stress and modulus, with reduced mass and elongation properties. Particularly, the aging-induced damage of polymer chain integrity was first determined by QCM-D through the evolution of mass loss during aging, providing supports to the changes of mechanical properties under aging. / Doctor of Philosophy / Natural polymers and thermoplastics are two major materials that are highly related to modern life. The interactions of these polymers with other molecules are important research topics for people to understand and predict the material properties. This dissertation studied the following three topics using a quartz crystal microbalance with dissipation monitoring (QCM-D): 1) interactions between plant natural polymer films and polymers in fungal cell wall; 2) solvent resistance of crosslinked thermoplastic films; and 3) physiochemical changes during photo-oxidation degradation of thermoplastic films. Pathogenic fungal cells can attack beneficial plant cell hosts by adhering themselves onto the plant cells, followed by penetration and enzymatic degradation of the multilayered plant cell walls until the host is digested. Therefore, the interaction between the components in fungal and plant cell walls is critical to understand pathogenic fungal cell invasion. Adsorption of mixed-linkage glucan (MLG) onto regenerated chitin (RChitin) and cellulose (RC) surfaces was monitored by QCM-D and atomic force microscopy (AFM). An irreversible binding interaction of MLG with chitin and cellulose films and a soft hydrogel-like layer on both surfaces were observed in our work. Poly(ether imide) (PEI) is a high-performance polymer with excellent thermal and mechanical properties. However, the good solubilities in common organic solvents that facilitate reasonable processibility limits its applications in solvent-related domains. Several methods of PEI crosslinking were developed in the literature to improve solvent resistance. This study prepared crosslinked PEI (X-PEI) films from azide-terminated PEI (N₃-PEI-N₃) via a simple thermal crosslinking reaction. X-PEI had better resistance to organic solvents from QCM-D measurements and maintained good thermal and mechanical performances. Photo-oxidation from air and sunlight slowly degrades plastics, shortens their service time, and leads to environmental pollution. This work bridged the gap between molecular integrity and its effect on the overall macroscopic mechanical changes through accurate measurement of the mass loss during degradation using a QCM-D. This work is essential in ensuring polymer design and active environmental protection.
5

Silicone blends for aeronautic applications / Mélanges de silicones pour l'aéronautique

Spigolis, Camille 12 April 2018 (has links)
Ces travaux de thèse portent sur le développement d’un joint silicone pour la connectique dans l’aéronautique. Ce joint silicone doit être résistant aux solvants ainsi qu’aux huiles susceptibles de rentrer en contact avec celui-ci, et posséder de bonnes propriétés thermiques et mécaniques. Pour ce faire, les paramètres influençant ces propriétés ont été étudiés, comme la composition de la matrice, les conditions de sa réticulation et la formulation via différentes charges. Des matériaux silicones tels que le polydiméthylsiloxane (PDMS) et le polytrifluoropropylméthylsiloxane (PTFPMS) ont été sélectionnés pour composer la matrice. Leur flexibilité, leur large plage de température d’utilisation ainsi que leur excellente résistance aux attaques chimiques en font des matériaux de choix pour ce genre d’application. L’étude des mélanges de PDMS et de PTFPMS a démontré que les proportions idéales sont de 70/30 PDMS/PTFPMS. Le type de mélangeur sélectionné est une calandre bi-rouleaux, dont les rouleaux sont chauffés à 40°C. La réticulation de la matrice a été le sujet d’une étude approfondie. La cinétique de réticulation a été étudiée et l’influence des paramètres de réticulation tels que la température de réticulation, la nature et la quantité de peroxyde sur les propriétés finales ont été discutées. Finalement, l’influence de l’ajout de différentes charges sur le gonflement, la résistance thermique et les propriétés mécaniques de l’élastomère a été étudiée afin d’élaborer la formulation du joint silicone. / Polydimethylsiloxane (PDMS) and polytrifluoropropylmethylsiloxane (PTFPMS) elastomers are popular material in the aeronautic and connector fields. Their flexibility, wide service temperature range and chemical resistance make them first-choice materials for such applications. PTFPMS provides oil and apolar solvent resistance to the final material, while PDMS provides resistance to polar solvents, greater thermal resistance than PTFPMS, and cost reduction. Typically, connector seals comprising PDMS and PTFPMS can be composed of blends of homopolymers, of copolymers or of blends of homopolymers and copolymers. This present work deals only with blends of homopolymers. First, commercial PDMS and PTFPMS bases were selected and characterised, the blending process chosen and the PDMS/PTFPMS ratio tuned so as to minimise swelling in acetone and methylcyclohexane while maximising thermal properties. The optimal blend composition comprised 30 wt% PTFPMS. The second part of this work explored the influence of crosslinking conditions on final properties of the cured PDMS/FS blend. Crosslinking parameters, such as the temperature (160 and 180°C), the nature (DCP and DBPH) and the quantity (0.5 and 1 wt%) of peroxide, were varied. It appeared that co vulcanisation between PDMS and PTFPMS, occurs in certain conditions. Swelling as well is influenced by crosslinking conditions but not thermal properties. Finally, the formulation of the ideal elastomer was developed. Fillers, such as TiO2, CaCO3, quartz, CeO, a pigment, Fe2O3 and a platinum compound, were selected and their influence on thermal, mechanical and swelling properties studied. Regarding thermal and solvent properties, a high loading of fillers is a good strategy, however, an increase of permanent set was observed with the augmentation of filler fraction. Final formulations were selected for the compromise they offered between thermal and swelling properties and mechanical behaviour on the lab scale. Morphology observation revealed well dispersed domains, comparable to that of the non additivated blend.

Page generated in 0.249 seconds