• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 135
  • 36
  • 27
  • 23
  • 16
  • 5
  • 3
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 288
  • 101
  • 54
  • 51
  • 42
  • 36
  • 33
  • 30
  • 29
  • 26
  • 24
  • 23
  • 22
  • 21
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

多噴孔ノズルバーナの燃焼特性と燃焼排出物の評価

SHANG, Hai, SUZUKI, Hiromu, YAMAMOTO, Kazuhiro, 商, 海, 鈴木, 祐夢, 山本, 和弘 06 1900 (has links)
No description available.
102

LII 法によるすす計測とディーゼル排気ガスへの適用

GAKEI, Shigefusa, YAMASHITA, Hiroshi, HAYASHI, Naoki, TAYA, Yukihiro, FUJIKAKE, Fumihiro, YAMAMOTO, Kazuhiro, 可計, 重英, 山下, 博史, 林, 直樹, 田谷, 幸洋, 藤掛, 文裕, 山本, 和弘 January 2008 (has links)
No description available.
103

Experimental and Numerical Studies for Soot Formation in Laminar Coflow Diffusion Flames of Jet A-1 and Synthetic Jet Fuels

Saffaripour, Meghdad 14 January 2014 (has links)
In the present doctoral thesis, fundamental experimental and numerical studies are conducted for the laminar, atmospheric pressure, sooting, coflow diffusion flames of Jet A-1 and synthetic jet fuels. The first part of this thesis presents a comparative experimental study for Jet A-1, which is a widely used petroleum-based fuel, and four synthetically produced alternative jet fuels. The main goals of this part of the thesis are to compare the soot emission levels of the alternative fuels to those of a standard fuel, Jet A-1, and to determine the effect of fuel chemical composition on soot formation characteristics. To achieve these goals, experimental measurements are constructed and performed for flame temperature, soot concentration, soot particle size, and soot aggregate structure in the flames of pre-vaporized jet fuels. The results show that a considerable reduction in soot production, compared to the standard fuel, can be obtained by using synthetic fuels which will help in addressing future regulations. A strong correlation between the aromatic content of the fuels and the soot concentration levels in the flames is observed. The second part of this thesis presents the development and experimental validation of a fully-coupled soot formation model for laminar coflow jet fuel diffusion flames. The model is coupled to a detailed kinetic mechanism to predict the chemical structure of the flames and soot precursor concentrations. This model also provides information on size and morphology of soot particles. The flames of a three-component surrogate for Jet A-1, a three-component surrogate for a synthetic jet fuel, and pure n-decane are simulated using this model. Concentrations of major gaseous species and flame temperatures are well predicted by the model. Soot volume fractions are predicted reasonably well everywhere in the flame, except near the flame centerline where soot concentrations are underpredicted by a factor of up to five. There is an excellent agreement between the computed and measured data for the numbers of primary particles per aggregate and the diameters of primary particles. This model is an important stepping-stone in the drive to simulate industry-relevant and multi-dimensional flames of practical liquid fuels, with detailed chemistry and soot formation.
104

Experimental and Numerical Studies for Soot Formation in Laminar Coflow Diffusion Flames of Jet A-1 and Synthetic Jet Fuels

Saffaripour, Meghdad 14 January 2014 (has links)
In the present doctoral thesis, fundamental experimental and numerical studies are conducted for the laminar, atmospheric pressure, sooting, coflow diffusion flames of Jet A-1 and synthetic jet fuels. The first part of this thesis presents a comparative experimental study for Jet A-1, which is a widely used petroleum-based fuel, and four synthetically produced alternative jet fuels. The main goals of this part of the thesis are to compare the soot emission levels of the alternative fuels to those of a standard fuel, Jet A-1, and to determine the effect of fuel chemical composition on soot formation characteristics. To achieve these goals, experimental measurements are constructed and performed for flame temperature, soot concentration, soot particle size, and soot aggregate structure in the flames of pre-vaporized jet fuels. The results show that a considerable reduction in soot production, compared to the standard fuel, can be obtained by using synthetic fuels which will help in addressing future regulations. A strong correlation between the aromatic content of the fuels and the soot concentration levels in the flames is observed. The second part of this thesis presents the development and experimental validation of a fully-coupled soot formation model for laminar coflow jet fuel diffusion flames. The model is coupled to a detailed kinetic mechanism to predict the chemical structure of the flames and soot precursor concentrations. This model also provides information on size and morphology of soot particles. The flames of a three-component surrogate for Jet A-1, a three-component surrogate for a synthetic jet fuel, and pure n-decane are simulated using this model. Concentrations of major gaseous species and flame temperatures are well predicted by the model. Soot volume fractions are predicted reasonably well everywhere in the flame, except near the flame centerline where soot concentrations are underpredicted by a factor of up to five. There is an excellent agreement between the computed and measured data for the numbers of primary particles per aggregate and the diameters of primary particles. This model is an important stepping-stone in the drive to simulate industry-relevant and multi-dimensional flames of practical liquid fuels, with detailed chemistry and soot formation.
105

The Development of a Laser-induced Incandescence System

Kempthorne, Trevor 27 July 2010 (has links)
The ability to accurately measure solid particulate levels in various applications ranging from engines to laboratory flames has become very important in the past few decades. A new approach to measuring soot levels called laser-induced incandescence was investigated. An apparatus was designed and built in order to measure soot levels in an atmospheric laminar diffusion flame with the intent of conducting proof-of-concept measurements. The apparatus utilized highly focussed optics while collecting time-resolved data using fast PMTs which allowed measurement of both time and spatial domains. Although noise and other technical problems proved to be a concern, measurements with reasonable agreement with published results for temperature (2800 K) and the primary particle soot size (6.3 +/- 2.5 nm) were achieved within the flame. Noise issues with the apparatus prevented accurate soot volume fraction measurements from being obtained. Numerous suggestions have been made as to how to improve the experiment for future use, potentially in a high pressure environment.
106

Laser-induced Incandescence of Soot for High Pressure Combustion Diagnostics

Cormier, Daniel 06 December 2011 (has links)
Accurate determination of soot emissions from combustion is of interest in both fundamental research and industries that rely on combustion. Laser-induced incandescence of soot particles is a young technique that allows unobtrusive measurements of both soot volume fraction and particulate size. An apparatus utilizing this technique has been brought to function for both atmospheric and high pressure measurements. Proof of concept measurements of an atmospheric ethylene-air laminar diffusion flame at 35, 42, and 47 mm above the burner exit correlate well with literature findings. Profile trends of a methane-air diffusion flame at 10, 20, and 40 atm at 6 mm above the burner are similar to reports in literature and are compared to trends from spectral soot emission measurements. Particle size is found to be roughly proportional to pressure. Discussion on the errors of laser-induced incandescence as well as recommendations for improving the apparatus are herein.
107

Soot Formation in Non-premixed Laminar Flames at Subcritical and Supercritical Pressures

Joo, Hyun Il 13 August 2010 (has links)
An experimental study was conducted using axisymmetric co-flow laminar diffusion flames of methane-air, methane-oxygen and ethylene-air to examine the effect of pressure on soot formation and the structure of the temperature field. A liquid fuel burner was designed and built to observe the sooting behavior of methanol-air and n-heptane-air laminar diffusion flames at elevated pressures up to 50 atm. A non-intrusive, line-of-sight spectral soot emission (SSE) diagnostic technique was used to determine the temperature and the soot volume fraction of methane-air flames up to 60 atm, methane-oxygen flames up to 90 atm and ethylene-air flames up to 35 atm. The physical flame structure of the methane-air and methane-oxygen diffusion flames were characterized over the pressure range of 10 to 100 atm and up to 35 atm for ethylene-air flames. The flame height, marked by the visible soot radiation emission, remained relatively constant for methane-air and ethylene-air flames over their respected pressure ranges, while the visible flame height for the methane-oxygen flames was reduced by over 50 % between 10 and 100 atm. During methane-air experiments, observations of anomalous occurrence of liquid material formation at 60 atm and above were recorded. The maximum conversion of the carbon in the fuel to soot exhibited a strong power-law dependence on pressure. At pressures 10 to 30 atm, the pressure exponent is approximately 0.73 for methane-air flames. At higher pressures, between 30 and 60 atm, the pressure exponent is approximately 0.33. The maximum fuel carbon conversion to soot is 12.6 % at 60 atm. For methane-oxygen flames, the pressure exponent is approximately 1.2 for pressures between 10 and 40 atm. At pressures between 50 and 70 atm, the pressure exponent is about -3.8 and approximately -12 for 70 to 90 atm. The maximum fuel carbon conversion to soot is 2 % at 40 atm. For ethylene-air flames, the pressure exponent is approximately 1.4 between 10 and 30 atm. The maximum carbon conversion to soot is approximately 6.5 % at 30 atm and remained constant at higher pressures.
108

The Development of a Laser-induced Incandescence System

Kempthorne, Trevor 27 July 2010 (has links)
The ability to accurately measure solid particulate levels in various applications ranging from engines to laboratory flames has become very important in the past few decades. A new approach to measuring soot levels called laser-induced incandescence was investigated. An apparatus was designed and built in order to measure soot levels in an atmospheric laminar diffusion flame with the intent of conducting proof-of-concept measurements. The apparatus utilized highly focussed optics while collecting time-resolved data using fast PMTs which allowed measurement of both time and spatial domains. Although noise and other technical problems proved to be a concern, measurements with reasonable agreement with published results for temperature (2800 K) and the primary particle soot size (6.3 +/- 2.5 nm) were achieved within the flame. Noise issues with the apparatus prevented accurate soot volume fraction measurements from being obtained. Numerous suggestions have been made as to how to improve the experiment for future use, potentially in a high pressure environment.
109

Laser-induced Incandescence of Soot for High Pressure Combustion Diagnostics

Cormier, Daniel 06 December 2011 (has links)
Accurate determination of soot emissions from combustion is of interest in both fundamental research and industries that rely on combustion. Laser-induced incandescence of soot particles is a young technique that allows unobtrusive measurements of both soot volume fraction and particulate size. An apparatus utilizing this technique has been brought to function for both atmospheric and high pressure measurements. Proof of concept measurements of an atmospheric ethylene-air laminar diffusion flame at 35, 42, and 47 mm above the burner exit correlate well with literature findings. Profile trends of a methane-air diffusion flame at 10, 20, and 40 atm at 6 mm above the burner are similar to reports in literature and are compared to trends from spectral soot emission measurements. Particle size is found to be roughly proportional to pressure. Discussion on the errors of laser-induced incandescence as well as recommendations for improving the apparatus are herein.
110

Atmospheric Measurements of Submicron Aerosols at the California-Mexico Border and in Houston, Texas

Levy, Misti E 03 October 2013 (has links)
Using an innovative arrangement of instruments to obtain a comprehensive set of properties, we present a description of the submicron aerosol properties for two distinct regions. During the 2009 SHARP/SOOT campaign in Houston, TX, the average effective density was 1.54 ± 0.07 g cm^-3, consistent with a population comprised largely of sulfates and organics Even in low concentrations (0.31 ± 0.22 µg m^-3), black carbon concentration has a significant impact on the overall density and optical properties. Under prevailing northerly winds, the average black carbon concentration increases from 0.26 ± 0.18 µg m^-3 to 0.60 ± 0.21 µg m^-3. Throughout the campaign, aerosols are often internally mixed, with one peak in the effective density distribution located at 1.55 ± 0.07 g cm^-3. In addition, we conclude that in this region the meteorology has a discernible impact on the concentration and properties of aerosols. After a frontal passage, there is a significant shift in the size distribution as the concentration of <100 nm particles increase and the average effective density decreases to 1.43 ± 0.08 g cm^-3. In Tijuana, Mexico, the submicron aerosols are heavily influenced by vehicle emissions. We observe an average single scattering albedo of 0.75. This average SSA is lower than observed in many US urban environments, and indicates a high concentration of black carbon. The average black carbon concentration is 2.71 ± 2.65 g cm^-3. The aerosol size distributions reveal a high concentration of small particles (< 100 nm) during the day, which are frequently associated with vehicle emissions. Overall, 46 and 81 nm particles are hydrophobic, have an average effective near 1.30 g cm^-3, a higher volatile growth factors than the larger particles, and exhibit a distinct diurnal cycle, which, on average, ranges between 0.80 during the afternoon and 1.70 g cm^-3 overnight. 46 and 81 nm distributions indicate a uniform aerosol composition. 151 and 240 nm aerosols are less cyclical, and the hygroscopicity, volatility, and effect density distributions all exhibit a bimodal distribution, which indicates an external mixture of aerosols. Black carbon and vehicle and industrial organic emissions appear to be the main components of the external mixture.

Page generated in 0.0234 seconds