• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 135
  • 36
  • 27
  • 23
  • 16
  • 5
  • 3
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 288
  • 101
  • 54
  • 51
  • 42
  • 36
  • 33
  • 30
  • 29
  • 26
  • 24
  • 23
  • 22
  • 21
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Oxidation and pyrolysis study on different gasoline surrogates in the jet-stirred reactor

Almalki, Maram M. 05 1900 (has links)
A better understanding and control of internal combustion engine pollutants require more insightful investigation of gasoline oxidation chemistry. An oxidation study has been done on n-heptane, iso-octane, their binary mixtures (Primary Reference Fuel, (PRF)), and nine hydrocarbon mixtures which represent the second generation of gasoline surrogates (multi-component surrogates). This study aims to develop a better understanding of the combustion reaction by studying the oxidation reaction of different fuels inside a jet-stirred reactor and numerically simulating the reaction using different models under the following conditions: pressure 1 bar, temperature 500-1050K, residence time 1.0 and 2.0s, and two fuel-to-oxygen ratios (ϕ=0.5 and 1.0). Intermediate and product species mole fractions versus temperature profiles were experimentally measured using a GC (gas chromatograph). The experiment was performed within the high and low-temperature regions, where the high-temperature oxidation showed similar behavior for different compositions but the low-temperature oxidation showed significant dependence on the composition of the surrogates. Additionally, the effect of octane number on oxidation chemistry has been investigated and it was found that the low octane number surrogates were more reactive than high octane number surrogates during the low temperature regime. Furthermore, Kinetic analysis was conducted to provide insightful understanding of different factors of fuel reactivity. In addition, the pyrolysis of two TPRF, (Toluene primary reference fuels) mixtures (TPRF70 and TPRF97.5), representing low octane (research octane number 70) and high octane (research octane number 97.5) gasoline, was also studied in jet-stirred reactor coupled with gas chromatography (GC) analysis to investigate the formation of soot and polycyclic aromatic hydrocarbons (PAH) formation.
62

Design of a Wolfhard-Parker burner and setup of the experimental conditions for the study of soot formation in dual-mode diffusion flames

Gjerazi, Agron 02 February 2010 (has links)
</p> <p>The formation of soot emissions in combustion processes poses environmental and efficiency problems which have long concerned scientists and engineers. A Wolfuard-Parker burner was designed and fabricated, to study soot formation in dual-mode diffusion flames, where the products of a lean premixed flame serve as oxidizer to the eventual diffusion flame, simulating a droplet combustion environment in Diesel engines.</p> <p> Experimental conditions were determined, and the whole burner assembly together . with the laser diagnostic optics were set ready for experiments. An experimental run with a single-mode flame served to confirm the calibration of the optics and demonstrated the flame stability and uniformity. Finally, recommendations for the future work were / Master of Engineering
63

The Effect of Ozone on Diesel Soot Precursors

Faison, Inga L. 23 April 1997 (has links)
A joint experimental and numerical project has been initiated at Virginia Tech to study the effect of ozone on diesel soot precursors. This thesis is the first stage of the numerical part of the project, and contains a study of the effect of the different ozone levels on diesel soot precursors. This numerical study is executed via the use of two computer programs, Senkin, and PSR. An idealistic model of the diesel engine was used in both analyses. The numerical studies were done at three different engine speeds, 1500, 2000, 2500 RPM and eight different levels of ozone. Studies were performed with ozone introduced with the intake air and with the fuel. Eleven product species, which include dominant soot precursors such as acetylene (C2H2) and the propargyl radical (C3H3), were examined and evaluated during this experiment. After analyzing both simulations, the PSR predictions were not useful since it omits the existence of temperature and species gradients. The PSR analysis was used as a preliminary model to get an overall idea of combustion pollutant formation and predicted the exit soot precursor concentrations were unaffected by any ozone addition. However, the Senkin analysis predicted the ozone injection did have the potential to reduce the formation of soot precursors. The Senkin analysis predicted more realistic results and therefore it is believed to yield the correct conclusion. However, it was suggested that an additional program, such as KIVA3, be utilized to predict a more practical view of the chemical kinetic behavior of ozone and its effect on the diesel engine. / Master of Science
64

Experimental Study on the Influence of Ammonia and Hydrogen addition on Soot Formation in Laminar Coflow Ethylene Diffusion Flames

Aydin, Faruk Yigit 08 1900 (has links)
Ammonia and hydrogen are two alternative fuels that can help decarbonization as they can be produced using renewable energy. Ammonia has transportation, handling, and storage advantages over hydrogen even though its combustion characteristics are worse. One intermediate strategy to use ammonia or hydrogen as a fuel is to co-fire it with hydrocarbons. However, co-firing with hydrocarbons may emit harmful pollutants such as NOx and soot. This study investigates the effects of ammonia and hydrogen addition on soot formation in laminar coflow nitrogen-diluted-ethylene normal diffusion flames using experimental techniques. Ammonia and hydrogen were added separately to the fuel flow. Flame conditions from 0 to 50 vol% of the added species (ammonia or hydrogen) were tested. Laser diagnostics for measuring the distributions of polycyclic aromatic hydrocarbons (PAHs) and soot volume fraction (SVF), and intrusive measurements (using a thermocouple and probe sampling) were performed. Based on the results, ammonia addition suppressed soot formation while hydrogen addition enhanced it. In conditions with ammonia addition, the temperature measurements with a Type S thermocouple and adiabatic flame temperature simulations using CHEMKIN PRO showed similar temperature profiles and negligible adiabatic flame temperature differences respectively. The qualitative PAH measurements using planar laser induced fluorescence (PLIF) showed that the concentration of PAHs of four or larger rings reduced with ammonia addition. Soot volume fraction (SVF) measurements using planar laser induced incandescence (PLII) showed that the peak SVF decreased exponentially with ammonia addition. Particle size distributions showed that the incipient particles were formed, however growth to mature primary particles was limited with 25% or higher ammonia addition in the flame. Based on similar temperature profiles and decreasing trends in the distribution of PAHs and SVF, soot suppression with ammonia addition was linked to chemical effects. PLIF measurements with hydrogen addition could be affected by the temperature difference between the flames, therefore further investigation is needed. PLII measurements, however, showed that the soot volume fraction increased linearly with hydrogen addition.
65

Soot formation in vitiated-air diffusion flames

Wirth, Douglas A. 12 January 2010 (has links)
Soot volume fractions have been measured using optical techniques in dual mode diffusion flames. A dual mode flame is defined as a diffusion fuel jet that burns in the wake of a premixed flame. The premixed flame combustion products simulate a vitiated-air environment: the air is preheated, rich in radicals, and depleted in oxygen. A two stage burner was used to investigate the effects of vitiation on the soot yield in diffusion flames. In the first stage, a fuel-lean premixed methane flame burned. A diffusion fuel jet was injected in the second stage. The effects of vitiation were simulated by varying the premixed flame stoichiometry, diffusion flame injection height above the premixed flame, and premixed flame temperature. The premixed flame stoichiometry affects the oxygen availability. The oxygen availability was varied from an 18% oxygen index to a 23% oxygen index. Different diluent gases (Ar, N₂, and CO₂) were used to alter the premixed flame temperature. The injection height of the diffusion flame (0.0 to 1.0 cm) affects the radical concentrations and temperature field. The soot yield from dual mode combustion was compared to the yield from similar single mode flames. For the single mode flames, air was injected through the first stage. Experimental results indicate that dual mode combustion increases the soot yield significantly in diffusion flames. Among flames at a 23% oxygen index, the mean increase in soot levels was 84%. Among flames at an 18% oxygen index, mean soot levels increased by 314%. In dual mode flames, the effect of injection height is weak, as is the effect of oxygen availability. The effects of the feed air temperature could not be resolved. In single mode flames, the effect of the injection height was weak, but oxygen availability affects soot yield significantly. Single mode flames show an average increase of 180% in soot yield at the 23% oxygen index with respect to the 18% oxygen index. These conclusions are the same for both ethene and propane as the diffusion flame fuels. / Master of Science
66

Investigation of Enhanced Soot Deposition on Smoke Alarm Horns

Phelan, Patrick 07 January 2005 (has links)
Post-fire reconstruction often includes the analysis of smoke alarms. The determination of whether or not an alarm has sounded during a fire event is of great interest. Until recently, analysis of smoke alarms involved in fires has been limited to electrical diagnostics, which, at best, determined whether or not a smoke alarm was capable of alarm during the fire event. It has subsequently been proposed that evaluation of the soot deposition around a smoke alarm horn can be used to conclude whether a smoke alarm has sounded during a fire event. In order to evaluate the effectiveness of using enhanced soot deposition patterns as an indication of smoke alarms sounding within a fire event, four test series were undertaken. First, a population of smoke alarms representative of the available market variety of horn configurations was selected. This population was subjected four test series. Test Series 1 consisted of UL/EN style experiments with fuel sources that included flaming polyurethane, smoldering polyurethane, flaming wood crib, and flaming turpentine pool. In Test Series 2, alarms were exposed to "nuisance" products from frying bacon, frying tortillas, burnt toast, frying breading, and airborne dust. Test Series 3 exposed the alarms to the following fire sources: smoldering cable, flaming cable, flaming boxes with paper, and flaming boxes with plastic cups. Test Series 4 included new, used, and pre-exposed smoke alarms that were exposed to two larger scale fires: a smoldering transitioning to flaming cabinet/wall assembly fire and a flaming couch section. The results from all four series were used to generate a hueristic for use in evaluating alarms from fire events. These criteria were blindly tested against the population of alarms to develop a correlation between the criteria and the previously tested smoke alarms. The results support the evaluation of soot deposition on smoke alarms exposed to a fire event as a viable method to determine whether or not an alarm sounded, without false positive or negative identifications.
67

Investigation on Nitric Oxide and Soot of Biodiesel and Conventional Diesel using a Medium Duty Diesel Engine

Song, Hoseok 2012 May 1900 (has links)
Biodiesel has been suggested as an alternative fuel to the petroleum diesel fuel. It beneficially reduces regulated emission gases, but increases NOx (nitric oxide and nitrogen dioxide) Thus, the increase in NOx is the barrier for potential growth of the biodiesel fuel. In general, NOx formation is dominated by flame temperature. Interestingly, soot can play a role as a heat sink as well as a heat transfer media to high temperature gases. Thus, the cooling effect of soot may change the flame temperature and therefore, NOx emissions. In this study, emphasis is placed on the relationship between soot and NO (Nitric oxide) formation. For the experimental study, a metallic fuel additive is used since barium is known to be effective to suppress soot formation during combustion. The barium additive is applied to #2D (Number 2 diesel fuel) by volume basis: 0.1, 0.25 and 0.5 %-v, and to the palm olein oil by 0.25 %-v. All the tests are carried out in a four-cylinder medium duty diesel engine, 4045 DI diesel engine, manufactured by John Deere. For the analysis, an analytical model is used to estimate combustion temperature, NO concentration and soot emissivity. The results show that NO concentration does not have the expected trade-off relation with soot. Rather, NO concentration is found to be more strongly affected by ambient temperature and combustion characteristics than by soot. The results of the analytical model show the reasonable NO estimation and the improvement on temperature calculation. However, the model is not able to explain the detailed changes of soot emissivity by the different fuels since the emissivity correlation is developed empirically for diesel fuel.
68

Diesel soot oxidation under controlled conditions

Song, Haiwen January 2003 (has links)
In order to improve understanding of diesel soot oxidation, an experimental rig was designed and set up, in which the soot oxidation conditions, such as temperature, oxygen partial pressure, and CO2 partial pressure, could be varied independently of each other. The oxidizing gas flow in the oxidizer was under laminar condition. This test rig comprised a naturally-aspirated single cylinder engine which acted as the soot generator, and a separate premixed oxidation burner system in which soot extracted from the engine was oxidized under controlled conditions. Diesel soot was extracted from the engine exhaust pipe and from the engine pre-combustion chamber, and the soot-laden gas was then conveyed to the burner where it was oxidized. The burner was positioned vertically and it had a flat flame whose thickness was only a few millimetres. The hot gases from the flame flew upwards through a quartz transparent tube which acted as the soot oxidation duct. The soot-laden gas from the engine was premixed with the feedgas (itself a premixed mixture of methane, air, oxygen, and nitrogen) to the burner. The soot particles passed vertically through the flame front and continued burning in the post-flame gas flowing through the quartz tube oxidation duct. The oxygen concentration and temperature of the post-flame soot oxidation gas were controllable by adjusting the flowrate and composition of the burner feedgas. Diesel soot particles were sampled at different heights along the centreline of the quartz tube above the burner. Profiles of oxygen concentration, temperature, and soot particle velocity in the oxidation zone were thus measured. Morphology and size distributions of the sampled diesel soot particles were analyzed by means of Transmission Electron Microscopy (TEM) and a computer software called ImagePro Plus. Subsequently, the specific surface oxidation rates of the soot particles were worked out based on soot particle size distributions. The TEM micrographs obtained in this study showed that the diesel soot agglomerates existed in forms of clusters and chains, each containing between a small number and thousands of individual, mostly spherical tiny particles. Of order 97% of the individual spherical particles (spherules) had a size range from 10 to 80 nm. Occasionally, individual spherules of about 150 nm in diameter could be observed. The diesel soot particles sampled from the pre-chamber of the engine had different size distributions from those sampled from the exhaust of the engine, indicating that the soot underwent an oxidation process in the combustion chamber. Soot oxidation experiments were performed in the burner post-flame gas under oxygen partial pressures ranging from 0.010 to 0.050 atm and temperatures from 1520 to 1820 K. The test results showed that the oxidation rates of the diesel soot extracted from the diesel engine were generally lower than those predicted by the well-known Nagle and Strickland-Constable formula; however, the measured oxidation rates were higher than the predictions made with another well-known formula - the Lee formula. The soot extracted from the engine pre-chamber appeared not to oxidize as fast as the soot extracted from the exhaust of the engine. CO2 gas injection to the post-flame oxidation gas at constant oxygen partial pressure and oxidation temperature seemed to have accelerated the diesel soot oxidation rate. Based on the experimental results of this study and the results of other researchers, modifications to the Nagle and Strickland-Constable formula and to the Lee formula were accomplished. Also, an empirical expression, as an alternative to semi-empirical formulae, was worked out and presented in the thesis.
69

Investigating Soot Morphology in Counterflow Flames at Elevated Pressures

Amin, Hafiz 01 1900 (has links)
Practical combustion devices such as gas turbines and diesel engines operate at high pressures to increase their efficiency. Pressure significantly increases the overall soot yield. Morphology of these ultra-fine particles determines their airborne lifetime and their interaction with the human respiratory system. Therefore, investigating soot morphology at high pressure is of practical relevance. In this work, a novel experimental setup has been designed and built to study the soot morphology at elevated pressures. The experimental setup consists of a pressure vessel, which can provide optical access from 10° to 165° for multi-angle light scattering, and a counterflow burner which produces laminar flames at elevated pressures. In the first part of the study, N2-diluted ethylene/air and ethane air counterflow flames are stabilized from 2 to 5 atm. Two-angle light scattering and extinction technique have been used to study the effects of pressure on soot parameters. Path averaged soot volume fraction is found to be very sensitive to pressure and increased significantly from 2 to 5 atm. Primary particle size and aggregate size also increased with pressure. Multi-angle light scattering is also performed and flames are investigated from 3 to 5 atm. Scattering to absorption ratio is calculated from multi-angle light scattering and extinction data. Scattering to absorption ratio increased with pressure whereas the number of primary particles in an aggregate decreased with increasing pressure. In the next part of the study, Thermophoretic Sampling of soot is performed, in counterflow flames from 3 to 10 atm, followed by transmission electron microscopy. Mean primary particle size increased with pressure and these trends are consistent withour light scattering measurements. Fractal properties of soot aggregates are found to be insensitive to pressure. 2D diffused light line of sight attenuation (LOSA) and Laser Induced Incandescence (LII) are used to measure local soot volume fraction from 2 to 10 atm. Local soot volume fraction increased with pressure and soot concentration profiles showed good agreements when measured by both techniques. Experimental data obtained in this work is very helpful for the modelers for validating their codes and predicting the soot formation in pressurized flames.
70

Low Temperature Soot Regime of Propane/Air in a Micro Flow Reactor with Controlled Temperature Profile

January 2019 (has links)
abstract: Micro/meso combustion has several advantages over regular combustion in terms of scale, efficiency, enhanced heat and mass transfer, quick startup and shutdown, fuel utilization and carbon footprint. This study aims to analyze the effect of temperature on critical sooting equivalence ratio and precursor formation in a micro-flow reactor. The effect of temperature on the critical sooting equivalence ratio of propane/air mixture at atmospheric pressure with temperatures ranging from 750-1250°C was investigated using a micro-flow reactor with a controlled temperature profile of diameter 2.3mm, equivalence ratios of 1-13 and inlet flow rates of 10 and 100sccm. The effect of inert gas dilution was studied by adding 90sccm of nitrogen to 10sccm of propane/air to make a total flow rate of 100sccm. The gas species were collected at the end of the reactor using a gas chromatograph for further analysis. Soot was indicated by visually examining the reactor before and after combustion for traces of soot particles on the inside of the reactor. At 1000-1250°C carbon deposition/soot formation was observed inside the reactor at critical sooting equivalence ratios. At 750-950°C, no soot formation was observed despite operating at much higher equivalence ratio, i.e., up to 100. Adding nitrogen resulted in an increase in the critical sooting equivalence ratio. The wall temperature profiles were obtained with the help of a K-type thermocouple, to get an idea of the difference between the wall temperature provided with the resistive heater and the wall temperature with combustion inside the reactor. The temperature profiles were very similar in the case of 10sccm but markedly different in the other two cases for all the temperatures. These results indicate a trend that is not well-known or understood for sooting flames, i.e., decreasing temperature decreases soot formation. The reactor capability to examine the effect of temperature on the critical sooting equivalence ratio at different flow rates was successfully demonstrated. / Dissertation/Thesis / Masters Thesis Aerospace Engineering 2019

Page generated in 0.044 seconds