• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 135
  • 36
  • 27
  • 23
  • 16
  • 5
  • 3
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 288
  • 101
  • 54
  • 51
  • 42
  • 36
  • 33
  • 30
  • 29
  • 26
  • 24
  • 23
  • 22
  • 21
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Measurement and analysis of the dimensionless extinction constant for diesel and biodiesel soot : influence of pressure, wavelength and fuel-type /

Choi, Seuk Cheun. Choi, Mun Young. January 2009 (has links)
Thesis (Ph.D.)--Drexel University, 2009. / Includes abstract and vita. Includes bibliographical references (leaves 226-234).
22

Polycyclic Aromatic Hydrocarbons and Soot Particle Formation in the Combustion Process

Shao, Can 12 1900 (has links)
The threat to the environment and human health posed by the emission of soot particles and their precursors during the combustion process has attracted widespread attention for some time. Generation of soot particles includes the precursor’s formation, particle nucleation, and the growth and oxidation of soot particles; these processes are experimentally and numerically studied in this dissertation. Fuel composition is one of the most important parameters in the study of the combustion emissions. In the first portion of this research, quantified soot precursors were detected in a jet stirred reactor and a flow reactor of several gasoline surrogates, which covered various fuel compositions and different MON numbers. A kinetic model was made to capture the polycyclic aromatic formations and help to clarify the chemistry behind them. Major reaction pathways were discussed, as well as the role of important intermediate species, such as acetylene, and resonantly stabilized radicals like allyl, propargyl, cyclopentadienyl, and benzyl in the formation of polycyclic aromatic hydrocarbons. In the second section, a Fourier-transform ion cyclotron resonance mass spectrometry was first used to probe the chemical constituents of soot particles. By examining the soot particle generated in the early stage of nucleation, some information about the nucleation process was gained. The aromatics in the infant soot particles were all peri-condensed, of a size and shape easily linked by Van der Waals forces to form aromatic dimers and bigger clusters under the specified flame conditions. Compositions in the mature soot particles indicated that soot particles grow through the carbonization process. As a hydrogen carrier, ammonia was considered a good additive for controlling soot formation. In the third portion of this work, chemical effects of ammonia on soot formation were studied. Ammonia can suppress soot formation by reducing the precursor’s formation. Chemical kinetic analysis revealed that C-N species generated in ethylene-ammonia flames removed carbon from participating in soot precursor formation, thereby reducing soot formation, however, high concentrations of toxic hydrogen cyanide may be formed, which warrants further investigation.
23

Tribology Of Combustion Generated Soot

Bhowmick, Hiralal 07 1900 (has links) (PDF)
Soot is a carbonaceous materials produced as a result of incomplete combustion of fuels (gasoline, diesel, etc). At the present level of automobile technology, emission of soot from combustion in diesel engine appears to be an inevitability. The disadvantage in the diesel combustion is that it is not homogeneous throughout the cylinder. So the fuel-air ratio cannot be maintained constant throughout the flame zone and hence rich combustion zone leads to the formation of soot. Diesel engine combustion processes produce a large amount of soot, which is one of the major pollutant emissions of the exhaust systems. The fraction of combustion particulate, which is soot, is often estimated by finding the insoluble portion of the particulate. Hydrocarbons or other available molecules may also condense on or beads orbed by soot depending on the surrounding conditions. Other particulate matter constituents include partially burned fuel/lubricant oil bound water, wear metal and fuel derived sulfate. In diesel engine lubrication, soot has long been recognized as the major contaminant that is detrimental to engine lubrication, particularly in friction and wear. Different techniques for soot abatement have been investigated by researchers from the field of combustion and fuel. In spite of the large numbers of investigations of soot formation conducted till date, there is relatively little quantitative information is available about the mechanisms and governing rate processes. Some of the studies focused on the combustion chemistry of soot formation while some emphasized on engine design. On the other hand comparatively a few research works are coming out from the tribological point of view. Considering that internal combustion engines play such an important role in industry, investigative research of the parametric influences of particle size, agglomeration, oil viscosity, additives and surfactant as well as chemistry and electrical properties of particles on wear as well as into the wear mechanisms have not perhaps been as extensive as it is detrimental. Existence of a large numbers of variables in tribological contacts makes the situation very complex and difficult to analyze it quantitatively. In this complex scenario, where many opposed effects are playing their roles in soot tribology, the influence of the physical, structural and mechanical properties of soot on engine tribology has limited attention. We focus our study on one of the end effects of engine soot; friction and wear of the engine components. Since a diesel engine is not particularly suitable for use in a laboratory study of the fundamental processes and parameters of combustion due to its inherent difficulties on control and safety as well as data analysis uncertainty, so the most useful studies of soot fundamentals have emerged from studies of processes which have used simplified environments such as diffusion flames. We focus on soot tribology in steel-on-steel interaction in the presence of soot material suspended in relatively simple paraffinic hydrocarbons, hexadecane; with and without an additive. The physical, structural, chemical and mechanical properties of the particle and their changes as a function of tribological parameters are monitored throughout this study. Three type of soot are used in this work. Firstly, commercial grade carbon blacks has been used as soot simulant. Secondly, to enable controlled variations of the physical, mechanical, chemical and geometrical parameters of the particles, soot is generated in-situ by burning ethylene gas and the particles are extracted thermophoretically from different thermal zones of the flame. Thirdly, to establish the validity of the study, two types of diesel soots are extracted from an engine and studied. The objective is to use such an understanding to elucidate the basic mechanisms of friction and wear in the presence of soot which may limit the performance of a diesel engine. From our study we find that these soots have widely different morphologies, crystallographic orders and reactivity. At tribological contact the soot agglomerates fragment to primary level particles. The physical and chemical properties of such particles determine the friction between and wear of mating components. If the soot is strongly graphitic, the friction and wear are moderate. If the soot is made of chemically active organic groups, the friction and wear are high. The hardness, friction and resistance to material removal of the soot collected near the flame tip and diesel soot are found to be high compared to the other types of soot. Besides, the high hardness, irregular primary particle shape, large inter-particle adhesion leading to agglomeration and more abrasive nature of diesel soot influence the metal wear adversely. This trend of soot tribology is profound when these soots are suitably dispersed in the oil by the addition of dispersants, in our case it is polyisobutylene succinimide. Different functional groups present on the soot surface play important role in defining the interaction between surrounding medium and contacts which, in turn define the contact conditions, particle/agglomerate behavior and soot tribology. Finally, agglomeration is simulated using the features of a dissipative particle dynamics package as the simulation technique. Simulations are performed on a sizeable number of particles to observe agglomeration behavior, on simple environment, in future which can be further extended.
24

Particle Vaporization Velocimetry and Quantitative Soot Concentration Measurement in Sooty Flows

Yang, Ping 15 November 2007 (has links)
Soot is a combustion generated pollutant that is both a direct risk to human health and a contributing source to global environmental change. Soot can also be a controlling factor in heat transfer inside combustion systems. Thus there is a growing interest in being able to measure soot and understand its production in practical, turbulent combustion environments. Therefore, the specific objectives of this research work were: (1) developing a way to measure velocity of sooty regions that is compatible with existing methods for measuring temporally and spatially resolved soot concentration fields and (2) using these methods to make quantitative measurements of soot in an unsteady, turbulent-like combustor. The Particle Vaporization Velocimetry (PVV) technique was developed and is compatible with Laser Induced Incandescence (LII), a soot concentration measurement approach. PVV is a flow tagging approach, where a high intensity laser (~2-3 J/cm2) is used to vaporize a small region in the soot field. This approach was demonstrated to produce a long lasting and easily readable flow tag that allows for velocity measurements over a wide range of velocities. LII proved to be the best method for detection the motion of the tag after a fixed delay. PVV and LII were used to measure velocity and two-dimensional soot concentration fields in an acoustically excited burner. In addition, images of soot luminosity were obtained. Both laminar and transitional acetylene diffusion flames were studied. The results reveal that strong acoustic forcing can significantly reduce total flame soot, as well as maximum soot concentrations, while simultaneously increasing the average soot temperature. The influence of acoustically generated vortices on soot formation was studied, and soot and products mixture mostly likely dominant high soot concentration regions. Eventually, these mixtures will be propagated downstream and oxidized as a diffusion flame.
25

MEASUREMENT AND MODELING OF SOOT FORMATION AND DEPOSITION IN FUEL RICH HIGH PRESSURE KEROSENE COMBUSTION

Rufat Kulakhmetov (6598352) 14 December 2020 (has links)
<p>Combustion of kerosene propellants often deposits soot on chamber walls. These deposits act as a thermal barrier and can significantly affect the analysis of cooling systems. This is especially vital for reusable engines since the accumulated soot deposit can make the wall heat flux vary between every firing. This dissertation discusses a computational and experimental effort to understand the main drivers of these soot deposits. The computational approach employs the Method of Moments with Interpolative Closure (MOMIC) model to predict soot particle dynamics; Brownian and thermophoretic diffusion for particle transport to the chamber surface; and the Hydrogen-Abstraction-Acetylene-Addition (HACA) mechanism for soot surface growth. These models were incorporated in a 1D plug flow reactor. Two-dimensional axisymmetric reacting CFD simulations were also run to understand the flow field influence on the near wall gas phase chemistry. Simultaneously, a fuel rich kerosene and gaseous oxygen experiment was developed and fired to obtain soot deposit thickness measurements for model comparison. The results show the reduced order plug flow model can satisfactorily predict the soot thickness and that thermophoresis is the dominant deposition mechanism. However, though the model can predict deposit mass trends, it underpredicts the absolute values for some conditions and may need an additional mechanism. </p>
26

Soot burnout in flames

Neoh, Koon Gee January 1981 (has links)
Thesis (Sc.D.)--Massachusetts Institute of Technology, Dept. of Chemical Engineering, 1981. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND SCIENCE. / Bibliography: leaves 330-335. / by Koon Gee Neoh. / Sc.D.
27

Prediction of Soot Formation in Laminar Opposed Diffusion Flame with Detailed and Reduced Reaction Mechanisms

Chang, Hojoon 01 December 2004 (has links)
The present work focuses on a computational study of a simplified soot model to predict soot production and destruction in methane/oxidizer (O2 and N2) and ethylene/air flames using a one-dimensional laminar opposed diffusion flame setup. Two different detailed reaction mechanisms (361 reactions and 61 species for methane/oxidizer flame and 527 reactions and 99 species for ethylene/air flame) are used to validate the simplified soot model in each flame. The effects of strain rate and oxygen content on the soot production and destruction are studied, and the soot related properties such as soot volume fraction, particle number density and particle diameter are compared with published results. The results show reasonable agreement with data and that the soot volume fraction decreases with higher strain rate and lower oxygen content. The simplified soot model has also been used with two reduced reaction mechanisms (12-step, 16-species for methane flame and 20-species for ethylene flame) since such reduced mechanisms are computationally more efficient for practical application. The profiles of the physical properties and the major species are in excellent agreement with the results using the detailed reaction mechanisms. However, minor hydrocarbon-species such as acetylene (C2H2) that is the primary pyrolysis species in the simplified soot model is significantly over predicted and this, in turn, results in an over-prediction of soot production. Finally, the reduced reaction mechanism is modified to get more accurate prediction of the minor hydrocarbon-species. The modified reduced reaction mechanism shows that the soot prediction can be improved by improving the predictions of the key minor species.
28

Laboratory investigation of chemical and physical properties of soot-containing aerosols

Zhang, Dan 16 August 2006 (has links)
Soot particles released from fossil fuel combustion and biomass burning have a large impact on the regional/global climate by altering the atmospheric radiative properties and by serving as cloud condensation nuclei (CCN). However, the exact forcing is affected by the mixing of soot with other aerosol constituents, such as sulfuric acid. In this work, experimental studies have been carried out focusing on three integral parts: (1) heterogeneous uptake of sulfuric acid on soot; (2) hygroscopic growth of H2SO4-coated soot aerosols; (3) effect of H2SO4 coating on scattering and extinction properties of soot particles. A low-pressure laminar-flow reactor, coupled to ion driftchemical ionization mass spectrometry (ID-CIMS) detection, is used to study uptake coefficients of H2SO4 on combustion soot. The results suggest that uptake of H2SO4 takes place efficiently on soot particles, representing an important route to convert hydrophobic soot to hydrophilic aerosols. A tandem differential mobility analyzing (TDMA) system is employed to determine the hygroscopicity of freshly generated soot in the presence of H2SO4 coating. It is found that fresh soot particles are highly hydrophobic, while coating of H2SO4 significantly facilitates water uptake on soot even at sub-saturation relative humidities. The results indicate that aged soot particles in the atmosphere can potentially be an efficient source of CCN. Scattering and extinction coefficient measurements of the soot-H2SO4 mixed particles are conducted using a threewavelength Nephelometer and a multi-path extinction cell. Coating of H2SO4 is found to increase the single scattering albedo (SSA) of soot particles which has impact on the aerosol direct radiative effect. Other laboratory techniques such as transmission electron microscopy (TEM) and Fourier transform infrared spectrometry (FTIR) are utilized to examine the morphology and chemical composition of the soot-H2SO4 particles. This work provides critical information concerning the heterogeneous interaction of soot and sulfuric acid, and how their mixing affects the hygroscopic and optical properties of soot. The results will improve our ability to model and assess the soot direct and indirect forcing and hence enhance our understanding of the impact of anthropogenic activities on the climate.
29

CFD simulation of soot formation and flame radiation

Lautenberger, Christopher W. January 2002 (has links)
Thesis (M.S.)--Worcester Polytechnic Institute. / Keywords: soot formation; FDS; flame radiation; soot oxidation; field modeling; diffusion flames; soot. Includes bibliographical references (p. 14-15).
30

Modelling interactions of polycyclic aromatic hydrocarbons during soot formation

Totton, Timothy Stephen January 2012 (has links)
No description available.

Page generated in 0.0421 seconds