• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 3
  • 1
  • Tagged with
  • 16
  • 16
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Evaluation of Scale Issues in SWAT

Mylevaganam, Sivarajah 2009 December 1900 (has links)
In Soil and Water Assessment Tool (SWAT), oftentimes, Critical Source Area (CSA), the minimum upstream drainage area that is required to initiate a stream, is used to subdivide a watershed. In the current literature, CSA has been used as a trial and error process to define the subwatershed levels. On the other hand, the ongoing collaboration of the United States Environmental Protection Agency Office of Water and the United States Geological Survey has promoted a national level predefined catchments and flowlines called National Hydrography Dataset (NHD) Plus to ease watershed modeling in the United States. The introduction of NHDPlus can eliminate the uncertain nature in defining the number of subwatersheds required to model the hydrologic system. This study demonstrates an integrated modeling environment with SWAT and NHDPlus spatial datasets. A spatial tool that was developed in a Geographical Information System (GIS) environment to by-pass the default watershed delineation in ArcSWAT, the GIS interface to SWAT, with the introduction of NHDPlus catchments and flowlines, was used in this study. This study investigates the effect of the spatial size (catchment area) of the NHDPlus and the input data resolution (cell/pixel size) within NHDPlus catchments on SWAT streamflow and sediment prediction. In addition, an entropy based watershed subdivision scheme is presented by using the landuse and soil spatial datasets with the conventional CSA approach to investigate if one of the CSAs can be considered to produce the best SWAT prediction on streamflow. Two watersheds (Kings Creek, Texas and Sugar Creek, Indiana) were used in this study. The study shows that there exists a subwatershed map that does not belong to one of the subwatershed maps produced through conventional CSA approach, to produce a better result on uncalibrated monthly SWAT streamflow prediction. Beyond the critical threshold, the CSA threshold which gives the best uncalibrated monthly streamflow prediction among a given set of CSAs, the SWAT performance can be improved further by subdividing some of the subwatersheds at this critical threshold. The study also shows that the input data resolution (within each NHDPlus catchments) does not have an influence on SWAT streamflow prediction for the selected watersheds. However, there is a change on streamflow prediction as the area of the NHDPlus catchment changes. Beyond a certain catchment size (8-9% of the watershed area), as the input data resolution becomes finer, the total sediment increases whereas the sediment prediction in high flow regime decreases. As the NHDPlus catchment size changes, the stream power has an influence on total sediment prediction. However, as the input data resolution changes, but keeping the NHDPlus catchment size constant, the Modified Universal Soil Loss Equation topographic factor has an influence on total sediment prediction.
2

Modeling recession flow and tracking the fate and transport of nitrate and water from hillslope to stream

Lee, Raymond M. 03 December 2018 (has links)
Nitrate (NO⁻3) export can vary widely among forested watersheds with similar nitrogen loading, geology, and vegetation, which suggests the importance of understanding differing internal retention mechanisms. Transport should be studied at the hillslope scale because the hillslope is the smallest unit with spatial and temporal resolution to reflect many relevant NO⁻3 retention and transport (flow-generation) processes, and headwater forested watersheds are largely comprised of sections of hillslopes. I conducted two experiments to elucidate subsurface flow dynamics and NO⁻3 transport and retention mechanisms on a constructed experimental hillslope model. In the first experiment, I tested whether decadal pedogenetic changes in soil properties in the experimental hillslope used by Hewlett and Hibbert (1963) would lead to changes in recession flow. I repeated (twice) their seminal experiment, whose results led to the development of the Variable Source Area paradigm, by also saturating, covering, and allowing the experimental hillslope to drain until it no longer yielded water. In the historical experiment there was fast drainage for 1.5 d, followed by slow drainage for ~140 d, which led the authors to conclude that recession flow in unsaturated soil could sustain baseflow throughout droughts. This long, slow drainage period was not reproduced in my experiments. Shapes of the drainage curves in my experiments were similar to the historical curve, but slow drainage was truncated, ending after 17 and 12 d, due likely to a leak in the boundary conditions, rather than to pedogenetic changes since the historical experiment. Leakage to bedrock, analogous to the leak in the hillslope model, is a commonly observed phenomenon and this study highlights how that can reduce drainage duration and the contribution of moisture from soils to support baseflow. In the second experiment, I tested whether movement of NO⁻3, which is considered a mobile ion, would be delayed relative to movement of water through a hillslope. I added concentrated pulses of ¹⁵NO⁻3 and a conservative tracer (²H₂O) on the same experimental hillslope, which was devegetated and irrigated at hydrologic steady state. Retention of the ¹⁵NO⁻3 tracer was high in the soil surface (0–10 cm) layer directly where the tracer was added. The portion of the ¹⁵NO⁻3 tracer that passed through this surface layer was further retained/removed in deeper soil. The reduction in the peaks in δ¹⁵N breakthrough was an order of magnitude larger than in δ₂H breakthrough at the outlet 5 m downslope of the tracer addition. The peaks in δ¹⁵N were also delayed relative to the peaks in δ₂H by 1, 6, 9 and 18.5 d for slope distances of 0, 2, 4, and 5 m, respectively, from tracer addition to the outlet. The excess mass of ¹⁵NO⁻3 recovered at the outlet was less than 3% of the original tracer mass injected. Nitrification and denitrification were estimated to be roughly 1:1 and were large fluxes relative to lateral transport into and out of the riparian zone. This tracer experiment shows that bedrock leakage, coupled with multiple retention/removal mechanisms can significantly delay export of added NO⁻3 with implications of additional NO⁻3 sink strength at the watershed scale. / Ph. D. / Nitrate (NO₃⁻) export can vary widely among forested watersheds with similar nitrogen loading, geology, and vegetation, which suggests the importance of understanding differing internal process mechanisms. I conducted two experiments to illustrate how water and NO₃⁻ moved on a constructed hillslope model. In the first experiment, I quantified differences in soil properties in the hillslope model used by Hewlett and Hibbert (1963). Then I repeated (twice) the seminal drainage experiment described in Hewlett and Hibbert (1963). The same hillslope (21.8°; 40%) was wetted up, covered, and allowed to drain until water stopped exiting at the outlet. In the historical experiment there was fast drainage for 1.5 d, followed by slow drainage for ~140 d, which led the authors to hypothesize that slow drainage in surface soil could continually contribute water to streams even during droughts. This long, slow drainage period was not reproduced in my experiments. Drainage was similar at the beginning of drainage between my experiments and the historical experiment, but in my experiment the slow drainage ended earlier (after 17 and 12 d) due likely to a leak in the constructed hillslope model, rather than to significant changes that occurred in the soil itself since the original experiment. This leak in the hillslope model is similar to leakage to bedrock, which is commonly observed in natural hillslopes. In the second experiment, I tested whether NO₃⁻ and water would move through a hillslope at the same rate. I added concentrated pulses of NO₃⁻ (as ¹⁵NO₃⁻ and water (as ²H₂O) on the same devegetated experimental hillslope. Retention of the ¹⁵NO₃⁻ tracer was high in the surface (0–10 cm) where the tracer was added, with little change in the immediately surrounding soil, despite high rates of water input immediately after tracer addition and throughout the experiment. The portion of the ¹⁵NO₃⁻ tracer that passed through the surface layer was further processed by microbes in deeper soil as it traveled downslope. This body of work shows that bedrock leakage, coupled with multiple retention mechanisms throughout the soil profile, can significantly delay export of added NO₃⁻ at the watershed scale.
3

Coupling Physical and Machine Learning Models with High Resolution Information Transfer and  Rapid Update Frameworks for Environmental Applications

Sommerlot, Andrew Richard 13 December 2017 (has links)
Few current modeling tools are designed to predict short-term, high-risk runoff from critical source areas (CSAs) in watersheds which are significant sources of non point source (NPS) pollution. This study couples the Soil and Water Assessment Tool-Variable Source Area (SWAT-VSA) model with the Climate Forecast System Reanalysis (CFSR) model and the Global Forecast System (GFS) model short-term weather forecast, to develop a CSA prediction tool designed to assist producers, landowners, and planners in identifying high-risk areas generating storm runoff and pollution. Short-term predictions for streamflow, runoff probability, and soil moisture levels were estimated in the South Fork of the Shenandoah river watershed in Virginia. In order to allow land managers access to the CSA predictions a free and open source software based web was developed. The forecast system consists of three primary components; (1) the model, which preprocesses the necessary hydrologic forcings, runs the watershed model, and outputs spatially distributed VSA forecasts; (2) a data management structure, which converts high resolution rasters into overlay web map tiles; and (3) the user interface component, a web page that allows the user, to interact with the processed output. The resulting framework satisfied most design requirements with free and open source software and scored better than similar tools in usability metrics. One of the potential problems is that the CSA model, utilizing physically based modeling techniques requires significant computational time to execute and process. Thus, as an alternative, a deep learning (DL) model was developed and trained on the process based model output. The DL model resulted in a 9% increase in predictive power compared to the physically based model and a ten-fold decrease in run time. Additionally, DL interpretation methods applicable beyond this study are described including hidden layer visualization and equation extractions describing a quantifiable amount of variance in hidden layer values. Finally, a large-scale analysis of soil phosphorus (P) levels was conducted in the Chesapeake Bay watershed, a current location of several short-term forecast tools. Based on Bayesian inference methodologies, 31 years of soil P history at the county scale were estimated, with the associated uncertainty for each estimate. These data will assist in the planning and implantation of short term forecast tools with P management goals. The short term modeling and communication tools developed in this work contribute to filling a gap in scientific tools aimed at improving water quality through informing land manager's decisions. / PHD
4

Localization of the source of large silicic ignimbrites through magnetic techniques : applications in Turkey / Localisation de source des ignimbrites acides à l'aide des techniques magnétiques : applications en Turquie

Agro, Alessandro 14 March 2014 (has links)
Cette recherche exploite une combinaison de techniques de terrain, paléomagnétiques et de magnétisme des roches pour corréler et localiser la source de plusieurs ignimbrites de deux régions de Turquie qui appartiennent à deux grands systèmes acides : la région du Cappadoce (Anatolie centrale), qui a été précédemment étudiée par plusieurs auteurs, et la région de Afyon-Eskişehir (Anatolie occidentale), jusqu'à présent peu étudiée. L’examen de l’ignimbrite de Kızılkaya (région du Cappadoce), d'âge Miocène supérieur, a consisté en une étude stratigraphique et de magnétisme des roches de l'unité ignimbritique, qui est considérée comme une seule unité d’écoulement et de refroidissement. La magnétisation rémanente, la fabrique magnétique (AMS, AIRM et AARM) et la minéralogie magnétique ont été analysées pour 35 sites de 7 localités situées à des distances différentes de la source supposée par Le Pennec et al. (1998) et à différentes hauteurs stratigraphiques, pour un total de 444 spécimens. La signature magnétique rémanente n’est pas verticalement homogène dans les dépôts. Deux cas sont distingués : (1) une TRM stable, dont la direction est conforme aux données de la littérature précédente (Piper et al., 2002) et (2) deux composantes de magnétisation caractérisées par une température de blocage et des spectres de coercivité se recouvrant. Ces situations ont été enregistrées respectivement en présence d'un Ti-magnétite primaire, et en présence simultanée de Ti-magnétite et de phases magnétiques secondaires (Ti-magnétite altérée et / ou hématite). La fabrique AMS varie verticalement dans le dépôt, en fonction de l'angle entre la direction de la linéation magnétique K1 et du pôle de la foliation magnétique K3, trois types de fabriques ont été caractérisées : normale, oblique et transversale. Après avoir démontré l’origine primaire de la fabrique magnétique, l'AMS a été accentuée par élimination des échantillons caractérisés par des valeurs de densité différentes de plus de ±} 1σ de la valeur moyenne du site. Cette opération s'est traduite par l'élimination des fabriques obliques, qui sont interprétées par la présence locale de fragments de ponces et clastes lithiques dans les échantillons. Les données d'AIRM et AARM indiquent que la Ti-magnétite MD est le principal minéral magnétique porteur de la fabrique, ce que suggère que la fabrique magnétique peut être utilisée pour déterminer les directions d'écoulement. L’examen de la succession ignimbritique d’âge Miocène précoce-Miocène supérieur, exposée sur une zone de ≈14 300 km2 dans la région d'Afyon-Eskişehir, a consisté en une étude stratigraphique-sédimentologique et de magnétisme des roches, afin de localiser la source des ignimbrites en combinant les données du terrain avec les directions de fabrique magnétique. La mesure des sections stratigraphiques, qui ont été réalisées pour 76 localités, conduit aux corrélations stratigraphiques et à la production de cartes d'isopaques et d'isoplètes. La succession ignimbritique est constituée d'au moins trois éruptions majeures distinctes qui ont produit les ignimbrites de Incik, Sabuncu et Seydiler, différentes en âge, distribution, structure et caractéristiques texturales des dépôts. L’étude magnétique consistait en analyses de la minéralogie magnétique et de la fabrique magnétique (AMS et AIRM), qui a été déterminée pour 22 localités sur un total de 36 sites à différentes hauteurs stratigraphiques, soit 600 spécimens. Les données de terrain et les résultats de la fabrique magnétique indiquent deux zones sources. La source des ignimbrites de Incik et Sabuncu est identifiée dans la caldeira de Kırka, une vaste zone de ≈ 20 x 20 km de diamètre, où la présence d'un dôme résurgent a été détectée. La source de l'ignimbrite de Seydiler est identifiée à proximité du village de Bayat. (...) / This research exploits a combination of field, paleomagnetic and rock-magnetic techniques to correlate locate the source and investigate several ignimbrites from two selected regions of Turkey, belonging to two large silicic ignimbrite systems : the well-investigated Cappadocia region (central Anatolia) and the poorly studied Afyon-Eskişehir region (western Anatolia). Investigation of the Upper Miocene Kızılkaya ignimbrite (Cappadocia region) consisted in a stratigraphic rock-magnetic study of the ignimbrite unit, which is considered to be a single flow and cooling unit. Remanent magnetization, magnetic fabric (AMS, AIRM and AARM) and magnetic mineralogy investigations were performed at 35 sites in 7 areal distributed localities at different distance from the vent position inferred by Le Pennec et al. (1998) and different stratigraphic heights, for a total of 444 specimens. Magnetic remanences are not vertically homogenous through the deposits. Two cases are distinguished: (1) a stable TRM, whose direction is consistent with previous literature data (Piper et al., 2002) and (2) two magnetization components with overlapping blocking temperature and coercivity spectra. These situations have been referred respectively to the occurrence of only primary Ti-magnetite, and primary Timagnetite plus secondary magnetic phases (alterated Timagnetite and/or hematite). The AMS fabric varies vertically throughout the deposit; based on the angle between the direction of the magnetic lineation K1 and that of the foliation plunge K3, three types of fabric are evidenced: normal, oblique and transverse. After have attested a primary origin of the magnetic fabric, the AMS was firstly enhanced by discarding all specimens whose density values differ more than +/- 1σ from the site mean value. This resulted in the elimination of the oblique fabrics, which are interpreted as an orientation disturbance due to local occurrence of pumices and lithic clasts in the specimens. Measurement of the AIRM and AARM pointed out that MD Timagnetite is the main carrier of the fabric, which suggests that the magnetic fabric is a reliable proxy for flow directions. Investigation of the Early-Upper Miocene ignimbrite succession exposed in the region of Afyon- Eskişehir consisted in a stratigraphic-sedimentologic and rock-magnetic study of the ignimbrite deposits over a ≈14,300 km2 extended area, in order to locate the source by combining field data and magnetic fabric flow directions. Measurement of the stratigraphic sections, performed at 76 distributed localities, led to ignimbrite correlations and production of isopach and isopleth maps. The ignimbrite succession consists of at least three distinct eruptions that originated the Incik, Sabuncu and Seydiler ignimbrites, different for age, areal distribution, structure and textural features of the deposits. Magnetic investigation consisted in magnetic mineralogy and magnetic fabric analyses (AMS and AIRM), was performed at 22 distributed localities for a total of 36 sites at different stratigraphic heights and 600 specimens. Both field data and magnetic fabric results concur for two source areas. The source area of the Incik and Sabuncu ignimbrites is identified with the Kırka caldera, a ≈20 x 20 km extended area where the presence of a resurgent dome has been detected; source area of the Seydiler ignimbrite is identified in the proximity of the village of Bayat. Volume calculations based on field data pointed out a VEI index of 7 for the Incik and Seydiler ignimbrite, 6 for Sabuncu ignimbrite, evidencing Plinian eruptions; the correspondent magnitude M (Pyle, 2000) is greater than 7 for each ignimbrite.
5

Adapting the SCS Method for Estimating Runoff in Shallow Water Table Environments

Masek, Caroline Humphrey 04 October 2002 (has links)
Rainfall-runoff modeling in the United States has made extensive use of the Soil Conservation Service (SCS) curve number method for computing infiltration losses from rainfall. Even though the method is well established and may be applied to a wide range of environments, it often results in highly erroneous runoff estimates for shallow water table environments. Flat topography, wetlands, and fine sands are characteristics that make places like Florida very different from the environments where the SCS method was originally developed. The SCS method arose from experiments with soils that are dominated by infiltration excess (Hortonian mechanism), where runoff occurs after rainfall intensity exceeds the infiltration capacity of the soil. In contrast, Florida is likely dominated by saturation excess runoff (Dunne mechanism), where the soil storage capacity between a shallow water table and the ground surface is filled, and all remaining rainfall becomes runoff. The sandy soils of Florida have very high infiltration capacities, and thus infiltration excess is less likely than saturation excess. As a consequence of the saturation-excess mechanism, wetlands expand in the wet season as the soil moisture storage around the perimeter is filled. A modified form of the SCS method is proposed with the objective that it is more suitable than the current method in flatly sloped, humid environments. Initial conditions, such as the pre-storm soil moisture profile and depth to water table, are critical when predicting runoff in these areas. Air encapsulation is addressed because its presence causes the soil storage capacity to be filled significantly faster than in its absence. Equations are presented that provide an estimate of the average depth to water table and average soil storage capacity in a catchment. Two Florida catchments and one runoff test bed were selected for testing the new methodology. The runoff test bed demonstrated the saturation-excess mechanism while the catchments provided larger-scale testing of the method. Though more data is needed to fully assess the performance of the method, the approach offers a more plausible mechanism for runoff estimation in shallow water table environments with sandy soils.
6

Runoff Generation on Barro Colorado Island (BCI), Panamá

Godsey, Sarah 04 September 2003 (has links)
No description available.
7

Assessing Phosphorus Sources with a GIS-Based Phosphorus Risk Index in a Mixed-Use, Montane Watershed

Johns, Josiah A. 01 June 2017 (has links)
Elevated phosphorus (P) loading of freshwater lakes and reservoirs often results in poor water quality and negative ecological effects. Critical source areas (CSA) of P in the watershed can be difficult to identify and control. A useful concept for identification of a CSA is the P risk index (P Index) that evaluates the P risk associated with distinct source and transport pathways. The objectives of this study were to create a GIS model that adapts the Minnesota (MN) P Index for use at the watershed scale in a mixed-use, mountain environment, and to evaluate its effectiveness relative to field-based assessment. A GIS-based model of the MN P Index, adapted for montane environments and relying primarily on publicly available geospatial data, was created and applied in the Wallsburg watershed, located in the mountains of Central Utah. One necessary data input, P found in plant residue of common Utah ecosystems, was found lacking after literature review. We experimentally determined a range of observed values from multiple ecosystems to adapt and validate the GIS model. The GIS P Index was evaluated against the results of 58 field scale applications of the MN P Index conducted throughout the watershed. The field-scale analysis resulted in about 14% of the sites sampled being identified as high or very high risk for P transport to surface water. Spatially, these high risk areas were determined to be a geographic cluster of fields near the lower middle agricultural section of the watershed. The GIS model visually and spatially identified the same cluster of fields as high risk areas. Various soil test P scenarios were explored and compared to the known 58 site values. Soil test phosphorus had little effect on the GIS model's ability to accurately predict P risk in this watershed suggesting that high volume soil sampling is not always necessary to identify CSAs of P. Variable hypothetical livestock density scenarios were also simulated. The GIS model proved sensitive to variable P inputs and highlighted the necessity of accurate applied P source data. On average the model under-predicted the known field-site values by a risk score of 1.3, which suggests reasonable success in P assessment based on the categorical risk scores of the MN P Index and some potential for improvement. The GIS model has great potential to give land managers the ability to quickly locate potential CSAs and prioritizing remediation efforts to sites with greatest risk.
8

Assessing Phosphorus Sources with Synoptic Sampling in the Surface Waters of a Mixed-Use, Montane Watershed

Pearce, Austin Willis 01 May 2017 (has links)
Few elements in surface waters are monitored as closely as phosphorus (P) due to its role in the eutrophication and degradation of surface waters. Limiting P mobilization from source areas is, therefore, a central goal of water quality protection plans. But the work of locating sources in mixed-use watersheds is challenged by the spatial and temporal variability of critical source areas (CSAs) of P. Synoptic sampling is a proven method for capturing the spatial variation of water quality parameters in surface waters, though it's not often used to track temporal dynamics across the same study area. Phosphorus fractionation is an analytical method that divides the total P (TP) in water into fractions, which for this study included total dissolved P (TDP), particulate P (PP), dissolved reactive P (DRP), and dissolved organic P (DOP). The objective of this study was to demonstrate the utility of combining temporally repeated synoptic sampling with simple P fractionation as a unique strategy for locating and characterizing CSAs of P. Seven synoptic sampling campaigns were conducted over a two-year period (March 2015 – July 2016) in a rural, montane watershed in north central Utah, USA. In each campaign, we sampled 18 sites across three tributaries (Main Creek, Spring Creek, and Little Hobble Creek) during three distinct, annual hydrologic periods (rising flow, peak flow, and baseflow). Temporal repetition clearly identified the rising flow period as the period with greatest P loading in the watershed. Combining repeated synoptic sampling and P fractionation successfully identified CSAs of P and most probable transfer pathways. Specifically, stream segments along lower Spring Creek and Main Creek were associated with the greatest increases of PP loads during periods of rising flow and peak flow. In the same time periods, the greatest DOP loads stemmed from forested areas as well as areas in the lower watershed associated with winter grazing of cattle. The watershed exhibited a significant background concentration of DRP from groundwater-driven subsurface sources in the lower half of the watershed that persisted year-round. These assessments can be used to develop management practices that limit various P loads from these respective critical source areas. The characterization of CSAs could not have been made using only a traditional synoptic sampling approach. This study demonstrated that the combination of repeated synoptic sampling and P fractionation can be an effective technique for locating and characterizing critical P source areas in order to guide best management practices that improve surface water quality.
9

Localization of the source of large silicic ignimbrites through magnetic techniques : applications in Turkey

Agro, Alessandro 14 March 2014 (has links) (PDF)
This research exploits a combination of field, paleomagnetic and rock-magnetic techniques to correlate locate the source and investigate several ignimbrites from two selected regions of Turkey, belonging to two large silicic ignimbrite systems : the well-investigated Cappadocia region (central Anatolia) and the poorly studied Afyon-Eskişehir region (western Anatolia). Investigation of the Upper Miocene Kızılkaya ignimbrite (Cappadocia region) consisted in a stratigraphic rock-magnetic study of the ignimbrite unit, which is considered to be a single flow and cooling unit. Remanent magnetization, magnetic fabric (AMS, AIRM and AARM) and magnetic mineralogy investigations were performed at 35 sites in 7 areal distributed localities at different distance from the vent position inferred by Le Pennec et al. (1998) and different stratigraphic heights, for a total of 444 specimens. Magnetic remanences are not vertically homogenous through the deposits. Two cases are distinguished: (1) a stable TRM, whose direction is consistent with previous literature data (Piper et al., 2002) and (2) two magnetization components with overlapping blocking temperature and coercivity spectra. These situations have been referred respectively to the occurrence of only primary Ti-magnetite, and primary Timagnetite plus secondary magnetic phases (alterated Timagnetite and/or hematite). The AMS fabric varies vertically throughout the deposit; based on the angle between the direction of the magnetic lineation K1 and that of the foliation plunge K3, three types of fabric are evidenced: normal, oblique and transverse. After have attested a primary origin of the magnetic fabric, the AMS was firstly enhanced by discarding all specimens whose density values differ more than +/- 1σ from the site mean value. This resulted in the elimination of the oblique fabrics, which are interpreted as an orientation disturbance due to local occurrence of pumices and lithic clasts in the specimens. Measurement of the AIRM and AARM pointed out that MD Timagnetite is the main carrier of the fabric, which suggests that the magnetic fabric is a reliable proxy for flow directions. Investigation of the Early-Upper Miocene ignimbrite succession exposed in the region of Afyon- Eskişehir consisted in a stratigraphic-sedimentologic and rock-magnetic study of the ignimbrite deposits over a ≈14,300 km2 extended area, in order to locate the source by combining field data and magnetic fabric flow directions. Measurement of the stratigraphic sections, performed at 76 distributed localities, led to ignimbrite correlations and production of isopach and isopleth maps. The ignimbrite succession consists of at least three distinct eruptions that originated the Incik, Sabuncu and Seydiler ignimbrites, different for age, areal distribution, structure and textural features of the deposits. Magnetic investigation consisted in magnetic mineralogy and magnetic fabric analyses (AMS and AIRM), was performed at 22 distributed localities for a total of 36 sites at different stratigraphic heights and 600 specimens. Both field data and magnetic fabric results concur for two source areas. The source area of the Incik and Sabuncu ignimbrites is identified with the Kırka caldera, a ≈20 x 20 km extended area where the presence of a resurgent dome has been detected; source area of the Seydiler ignimbrite is identified in the proximity of the village of Bayat. Volume calculations based on field data pointed out a VEI index of 7 for the Incik and Seydiler ignimbrite, 6 for Sabuncu ignimbrite, evidencing Plinian eruptions; the correspondent magnitude M (Pyle, 2000) is greater than 7 for each ignimbrite.
10

Proveniência dos arenitos-reservatório de água profunda do Campo de Jubarte, Bacia de Campos, margem continental brasileira

Fontanelli, Paola de Rossi January 2007 (has links)
A utilização de técnicas integradas de análise de proveniência sedimentar, incluindo a petrografia quantitativa utilizando o método Gazzi-Dickinson, a análise convencional de minerais pesados, a análise da composição química de granadas (análise varietal) e a geocronologia U-Pb (LAM-ICPMS-MC) em zircão, permitiram a identificação das áreas-fonte e o padrão de suprimento sedimentar dos arenitos de água profunda maastrichtianos que constituem os reservatórios do Campo de Jubarte, Bacia de Campos. Os arenitos são pobremente selecionados, com grãos sub-angulares a angulares, denotando rápido transporte. Apresentam composição original rica em feldspatos (arcósios sensu Folk, 1968) e pobre em fragmentos líticos de textura fina, proveniente de terrenos soerguidos de embasamento (sensu Dickinson, 1985). As assembléias de minerais pesados indicam proveniência a partir de rochas metamórficas de alto e médio grau, derivadas de metapelitos aluminosos metamorfisados em altas temperaturas e pressões baixas a médias, de granitos e subordinadamente de rochas máficas (metabasitos), pertencentes ao Domínio Tectônico Cabo Frio e ao terreno Oriental (domínio Costeiro) do orógeno Ribeira.A direção principal de suprimento sedimentar foi de sudoeste para nordeste, interpretada com base na identificação dos terrenos-fonte com abundante cianita no Domínio Tectônico Cabo Frio. Foi descartado o suprimento de sedimentos provenientes de noroeste, coincidente com a direção estrutural da faixa cataclasada de Colatina. As seqüências de quarta e quinta ordem analisadas não mostram variação na composição essencial, embora apresentem uma variação discreta na razão apatita:turmalina, que por isto apresenta potencial para ser utilizada como correlação entre os corpos de arenito dentro do campo. O índice ZTR baixo, combinado com a ausência de fragmentos metassedimentares e minerais pesados de baixo grau sugerem que ao final do Cretáceo os processos erosivos já haviam removido completamente as rochas supracrustais de baixo grau, expondo os terrenos plutônicos infracrustais. A composição quartzo-feldspática resultante favoreceu a qualidade dos reservatórios. A análise integrada dos dados sugere uma área-fonte tectonicamente ativa, relativamente próxima da bacia, submetida a um soerguimento rápido que permitiu a erosão de grandes volumes de sedimentos sob um regime de intemperismolimitado. Assim que erodidos das rochas-fonte os sedimentos foram transportados desde curtos rios de montanha e/ou leques aluviais rapidamente para águas profundas. A variação de alta freqüência da razão apatita:turmalina indica derivação direta dos arenitos do Campo de Jubarte a partir de um sistema aluvial relativamente próximo. / The application of integrated techniques of provenance analysis, including quantitative petrography using the Gazzi-Dickinson point-counting method, conventional heavy mineral analysis, garnet mineral chemistry and U-Pb zircon geochronology, allowed the identification of source-rocks and the sedimentary supply pattern for the Maastrichtian deep-water reservoir sandstones of the Jubarte Field, Campos Basin. The sandstones are poorly-sorted with angular to sub-angular grains denoting fast transportation. They present a detrital composition rich in feldspars (arkoses sensu Folk, 1968) and poor in finely-crystalline lithic fragments, with provenance from continental blocks of uplifted basement (sensu Dickinson, 1985). The heavy mineral assemblages indicate provenance from high-grade metamorphic rocks, derived from aluminous metapelites metamorphosed at high temperatures and low to medium pressures, from granites and from subordinate mafic rocks (metabasites), belonging to the Cabo Frio Tectonic Domain and the Oriental (Costeiro) terrain of the Ribeira orogen. The main sedimentary supply route during late Cretaceous was from southwest to northeast, indicated mainly by the presence of kyanite in the Cabo Frio Domain source-rocks. A possible dispersal pattern from northwest to southeast, coinciding with the Colatina shear zone, can be discarded. The fourth and fifth-order depositional sequences analyzed show no variation in major composition through time, although displaying a discrete variation of the apatite:tourmaline ratio, which thus present potential to be used as a parameter for sandstone correlation within the field. A low ZTR index coupled to the absence of low-grade heavy minerals and meta-sedimentary rock fragments suggest that at late Cretaceous the erosive processes had already removed the supracrustal, low-grade meta-sedimentary rocks, exposing the infracrustal plutonic terrains. The resulting quartz-feldspathic composition favored the quality of the reservoirs. The integrated analysis of compositional data suggests a tectonically-active source-area located close to the basin, where rapid tectonic uplift produced a large amount of sediments under a weathering-limited regime of erosion. Soon after being eroded from the bedrocks, these sediments were transported from short mountain rivers and/or by alluvial fans, directly to deep-water. The high-frequency variation inapatite:tourmaline ratio support direct derivation of Jubarte sandstones from a relatively proximal alluvial system.

Page generated in 0.0394 seconds