• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 1
  • Tagged with
  • 13
  • 13
  • 7
  • 7
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Volume Change of the Tasman Glacier Using Remote Sensing

Thomas, Joel Spencer January 2008 (has links)
Mountain glaciers are expected to be the greatest contributor to sea level rise over the next century. Glaciers provide a good indicator of global climate and how to monitor their change is an increasingly important issue for climate science and for sea level rise forecasts. However, there has been little direct measurement of glacier volume change in New Zealand. This study explores the use of remotely sensed data for measuring glacier volume change from 1965 to 2006. Digital photogrammetric methods were used to extract topographic data of the Tasman Glacier from aerial photography and ASTER imagery for the years 1965, 1986, 2002 and 2006. SRTM C band data from 2000 were also analysed. Data were compared to an existing digital elvation model produced from the New Zealand Digital Topographic Database to test for their reliability. Using regression analysis, the data were filtered and points representing rock were used to correct points on the glacier ice for vertical bias. The quality of the data extracted from the aerial photography was good on rock and debris covered ice, but poor on snow. The data extracted from ASTER was much more reliable on snow in the upper glacier than the aerial photography, but was very poor in the lower debris covered region of the glacier. While the quality of the SRTM data is very high, there is a second order distortion present in the data that is evident over elevation differences. However, the overall mean difference of the SRTM rock from TOPODATA is close to zero. An overall trend could be seen in the data between dates. However, the 2006 ASTER data proved unreliable on the debris covered section of the glacier. Total volume change is therefore calculated for the period between 1965 and 2002. The data show a loss of 3:4km³ or 0:092km³ per year, an estimated 6% of the total ice in New Zealand. This is compared to estimates using the annual end of summer snowline survey between 1977 and 2005 of 1:78 km³, or 0:064km³ per year. The spatial resolution of ASTER makes high temporal resolution monitoring of volume change unlikely for the New Zealand glaciers. The infrequency of aerial photography, the high cost and vast time involved in extracting good quality elevation data from aerial photography makes it impractical for monitoring glacier volume change remotely. However, SRTM and other radar sensors may provide a better solution, as the data do not rely heavily on user processing.
2

Geomorphic Hazards associated with Glacial Change, Aoraki/Mount Cook region Southern Alps, New Zealand

Allen, Simon Keith January 2009 (has links)
Glacial floods and mass movements of ice, rock or debris are a significant hazard in many populated mountainous regions, often with devastating impacts upon human settlements and infrastructure. In response to atmospheric warming, glacial retreat and permafrost thaw are expected to alter high mountain geomorphic processes, and related instabilities. In the Aoraki/Mount Cook region of New Zealand's Southern Alps, a first investigation of geomorphic hazards associated with glacial change is undertaken and is based primarily on the use of remote sensing and Geographic Information Systems (GIS) for mapping, modelling, and analysing related processes and terrain. Following a comprehensive review of available techniques, remote sensing methods involving the use Advanced Spaceborne Thermal Emission and Radiometer (ASTER) imagery were applied to map glacial ice, lakes and debris accumulations in the Aoraki/Mount Cook region. Glacial lakes were mapped from two separate classification techniques using visible near infrared wavelengths, capturing highly turbid and clearer water bodies. Large volume (10⁶– 10⁸ m³) proglacial lakes have developed rapidly over recent decades, with an overall 20 % increase in lake area recorded between 2002 and 2006, increasing the potential for large mass movement impacts and flooding from displaced water. Where significant long-term glacial recession has occurred, steep moraines have been exposed, and large talus slopes occupy formerly glaciated slopes at higher elevations. At the regional-scale, these potential source areas for debris instabilities were distinguished from surrounding bedrock slopes based on image texture variance. For debris and ice covered slopes, potentially unstable situations were classified using critical slope thresholds established from international studies. GIS-based flow routing was used to explore possible intersections between zones of human use and mass movement or flood events, assuming worst-case, probable maximum runout distances. Where glacial lakes are dammed by steep moraine or outwash gravel, primarily in cirque basins east of the Main Divide, modelled debris flows initiated by potential flood events did not reach any infrastructure. Other potential peri- and para-glacial debris flows from steep moraines or talus slopes can reach main roads and buildings. The direct hazard from ice avalanches is restricted to backcountry huts and walking tracks, but impacts into large glacial lakes are possible, and could produce a far reaching hazard, with modelled clear water flood-waves capable of reaching village infrastructure and main roads both east and west of the Main Divide. A numerical modelling approach for simulating large bedrock failures has been introduced, and offers potential with which to examine possible lake impacts and related scenarios. Over 500 bedrock slope failures were analysed within a GIS inventory, revealing distinct patterns in geological and topographic distribution. Rock avalanches have occurred most frequently from greywacke slopes about and east of the Main Divide, particularly from slopes steeper than 50°, and appear the only large-magnitude failure mechanism above 2500 m. In the schist terrain west of the Main Divide, and at lower elevations, other failure types predominate. The prehistoric distribution of all failure types suggests a preference for slopes facing west to northwest, and is likely to be strongly influenced by earthquake generated failures. Over the past 100 years, seismicity has not been a factor, and the most failures have been as rock avalanches from slopes facing east to southeast, particularly evident from the glaciated, and potentially permafrost affected hangingwall of the Main Divide Fault Zone. An initial estimate of permafrost distribution based on topo-climatic relationships and calibrated locally using mean annual air temperature suggested permafrost may extend down to elevations of 3000 m on sunny slopes, and as low as 2200 m on shaded slopes near the Main Divide. A network of 15 near-surface rock temperature sensors was installed on steep rock walls, revealing marginal permafrost conditions (approaching 0 °C) extending over a much larger elevation range, occurring even where air temperature is likely to remain positive, owing to extreme topographic shading. From 19 rock failures observed over the past 100 years, 13 detachment zones were located on slopes characterized by marginal permafrost conditions, including a sequence of 4 failures that occurred during summer 2007/08, in which modelled bedrock temperatures near the base of the detachments were in the range of 1.4 to +2.5 °C. Ongoing monitoring of glacial and permafrost conditions in the Aoraki/Mount Cook region is encouraged, with more than 45 km2 of extremely steep slopes (>50°) currently ice covered or above modelled permafrost elevation limits. Approaches towards modelling and analysing glacial hazards in this region are considered to be most applicable within other remote mountain regions, where seismicity and steep topography combine with possible destabilizing influences of glacial recession and permafrost degradation.
3

Recent glacier and climate change in the New Zealand Alps

Ruddell, Andrew Reginald Unknown Date (has links) (PDF)
The sensitivity of glaciers in the Southern Alps of New Zealand is evaluated to identify the nature of recent climate change. Past glaciological observations are compiled and to these are added 4 summer field seasons on the Tasman (including Hochstetter), Dart, Fox and Franz Josef Glaciers. The field data are an important aspect in the calibration and verification of glacier modelling. The detailed studies of these glaciers provides the basis for assessing the glacier and climatic changes over the whole glacierized region. (For complete abstract open document)
4

Volume Change of the Tasman Glacier Using Remote Sensing

Thomas, Joel Spencer January 2008 (has links)
Mountain glaciers are expected to be the greatest contributor to sea level rise over the next century. Glaciers provide a good indicator of global climate and how to monitor their change is an increasingly important issue for climate science and for sea level rise forecasts. However, there has been little direct measurement of glacier volume change in New Zealand. This study explores the use of remotely sensed data for measuring glacier volume change from 1965 to 2006. Digital photogrammetric methods were used to extract topographic data of the Tasman Glacier from aerial photography and ASTER imagery for the years 1965, 1986, 2002 and 2006. SRTM C band data from 2000 were also analysed. Data were compared to an existing digital elvation model produced from the New Zealand Digital Topographic Database to test for their reliability. Using regression analysis, the data were filtered and points representing rock were used to correct points on the glacier ice for vertical bias. The quality of the data extracted from the aerial photography was good on rock and debris covered ice, but poor on snow. The data extracted from ASTER was much more reliable on snow in the upper glacier than the aerial photography, but was very poor in the lower debris covered region of the glacier. While the quality of the SRTM data is very high, there is a second order distortion present in the data that is evident over elevation differences. However, the overall mean difference of the SRTM rock from TOPODATA is close to zero. An overall trend could be seen in the data between dates. However, the 2006 ASTER data proved unreliable on the debris covered section of the glacier. Total volume change is therefore calculated for the period between 1965 and 2002. The data show a loss of 3:4km³ or 0:092km³ per year, an estimated 6% of the total ice in New Zealand. This is compared to estimates using the annual end of summer snowline survey between 1977 and 2005 of 1:78 km³, or 0:064km³ per year. The spatial resolution of ASTER makes high temporal resolution monitoring of volume change unlikely for the New Zealand glaciers. The infrequency of aerial photography, the high cost and vast time involved in extracting good quality elevation data from aerial photography makes it impractical for monitoring glacier volume change remotely. However, SRTM and other radar sensors may provide a better solution, as the data do not rely heavily on user processing.
5

Geomorphic Hazards associated with Glacial Change, Aoraki/Mount Cook region Southern Alps, New Zealand

Allen, Simon Keith January 2009 (has links)
Glacial floods and mass movements of ice, rock or debris are a significant hazard in many populated mountainous regions, often with devastating impacts upon human settlements and infrastructure. In response to atmospheric warming, glacial retreat and permafrost thaw are expected to alter high mountain geomorphic processes, and related instabilities. In the Aoraki/Mount Cook region of New Zealand's Southern Alps, a first investigation of geomorphic hazards associated with glacial change is undertaken and is based primarily on the use of remote sensing and Geographic Information Systems (GIS) for mapping, modelling, and analysing related processes and terrain. Following a comprehensive review of available techniques, remote sensing methods involving the use Advanced Spaceborne Thermal Emission and Radiometer (ASTER) imagery were applied to map glacial ice, lakes and debris accumulations in the Aoraki/Mount Cook region. Glacial lakes were mapped from two separate classification techniques using visible near infrared wavelengths, capturing highly turbid and clearer water bodies. Large volume (10⁶– 10⁸ m³) proglacial lakes have developed rapidly over recent decades, with an overall 20 % increase in lake area recorded between 2002 and 2006, increasing the potential for large mass movement impacts and flooding from displaced water. Where significant long-term glacial recession has occurred, steep moraines have been exposed, and large talus slopes occupy formerly glaciated slopes at higher elevations. At the regional-scale, these potential source areas for debris instabilities were distinguished from surrounding bedrock slopes based on image texture variance. For debris and ice covered slopes, potentially unstable situations were classified using critical slope thresholds established from international studies. GIS-based flow routing was used to explore possible intersections between zones of human use and mass movement or flood events, assuming worst-case, probable maximum runout distances. Where glacial lakes are dammed by steep moraine or outwash gravel, primarily in cirque basins east of the Main Divide, modelled debris flows initiated by potential flood events did not reach any infrastructure. Other potential peri- and para-glacial debris flows from steep moraines or talus slopes can reach main roads and buildings. The direct hazard from ice avalanches is restricted to backcountry huts and walking tracks, but impacts into large glacial lakes are possible, and could produce a far reaching hazard, with modelled clear water flood-waves capable of reaching village infrastructure and main roads both east and west of the Main Divide. A numerical modelling approach for simulating large bedrock failures has been introduced, and offers potential with which to examine possible lake impacts and related scenarios. Over 500 bedrock slope failures were analysed within a GIS inventory, revealing distinct patterns in geological and topographic distribution. Rock avalanches have occurred most frequently from greywacke slopes about and east of the Main Divide, particularly from slopes steeper than 50°, and appear the only large-magnitude failure mechanism above 2500 m. In the schist terrain west of the Main Divide, and at lower elevations, other failure types predominate. The prehistoric distribution of all failure types suggests a preference for slopes facing west to northwest, and is likely to be strongly influenced by earthquake generated failures. Over the past 100 years, seismicity has not been a factor, and the most failures have been as rock avalanches from slopes facing east to southeast, particularly evident from the glaciated, and potentially permafrost affected hangingwall of the Main Divide Fault Zone. An initial estimate of permafrost distribution based on topo-climatic relationships and calibrated locally using mean annual air temperature suggested permafrost may extend down to elevations of 3000 m on sunny slopes, and as low as 2200 m on shaded slopes near the Main Divide. A network of 15 near-surface rock temperature sensors was installed on steep rock walls, revealing marginal permafrost conditions (approaching 0 °C) extending over a much larger elevation range, occurring even where air temperature is likely to remain positive, owing to extreme topographic shading. From 19 rock failures observed over the past 100 years, 13 detachment zones were located on slopes characterized by marginal permafrost conditions, including a sequence of 4 failures that occurred during summer 2007/08, in which modelled bedrock temperatures near the base of the detachments were in the range of 1.4 to +2.5 °C. Ongoing monitoring of glacial and permafrost conditions in the Aoraki/Mount Cook region is encouraged, with more than 45 km2 of extremely steep slopes (>50°) currently ice covered or above modelled permafrost elevation limits. Approaches towards modelling and analysing glacial hazards in this region are considered to be most applicable within other remote mountain regions, where seismicity and steep topography combine with possible destabilizing influences of glacial recession and permafrost degradation.
6

Role of lithospheric delamination and ice-driven rockfall erosion in the evolution of mountainous landscapes /

Hales, Tristram Charles, January 2006 (has links)
Thesis (Ph. D.)--University of Oregon, 2006. / Typescript. Includes vita and abstract. Includes bibliographical references (leaves 115-137). Also available for download via the World Wide Web; free to University of Oregon users.
7

Late Pleistocene Glacial Geology of the Hope-Waiau Valley System in North Canterbury, New Zealand

Rother, Henrik January 2006 (has links)
This thesis presents stratigraphic, sedimentological and geochronological results from valley fill and glacial moraines of the Hope-Waiau Valleys in North Canterbury, New Zealand. The findings demonstrate that a substantial portion of the modern valley fill comprises in-situ sedimentary sequences that were deposited during the penultimate glaciation (OIS 6), the last interglacial (OIS 5) and during the mid-late last glacial cycle (OIS 3/2). The sediments survived at low elevations in the valley floor despite overriding by later glacial advances. Sedimentologically, the fill indicates deposition in an ice marginal zone and consists of paraglacial/distal-proglacial aggradation gravels and ice-proximal/marginal-subglacial sediments. Deposition during glacial advance phases was characterized by the sedimentation of outwash gravels and small push moraines while glacial retreat phases are dominated by glaciolacustrine deposits which are frequently interbedded with debris flow diamictons. The overall depositional arrangement indicates that glacial retreat from the lower valley portion occurred via large scale ice stagnation. Results from infra-red stimulated luminescence (IRSL) dating gives evidence for five large aggradation and degradation phases in the Hope-Waiau Valleys over the last 200 ka. Combined with surface exposure dating (SED) of moraines the geochronological results indicate that glacial advances during OIS 6 were substantially larger in both ice extent and ice volume than during OIS 4-2. The last glacial maximum (LGM) ice advance occurred prior to 20.5 ka and glacial retreat from extended ice positions began by ~18 ka BP. A late glacial re-advance (Lewis Pass advance) occurred at ~13 ka BP and is probably associated with a regional cooling event correlated to the Antarctic Cold Reversal (ACR). The findings from the Hope-Waiau Valleys were integrated into a model for glaciations in the Southern Alps which uses data from a snow mass balance model to analyse the sensitivity of glacial accumulation to temperature forcing. Model results indicate that in the central hyperhumid sector of the Southern Alps ice would expand rapidly with minor cooling (2-4℃) suggesting that full glaciation could be generated with little thermal forcing. Some Quaternary glacial advances in the Southern Alps may have been triggered by regional climate phenomena (e.g. changes in ENSO mode) rather than requiring a thermal trigger from the Northern Hemisphere.
8

Paraglacial Rockslope Stability

McColl, Samuel Thomas January 2012 (has links)
The aim of this research was to study the relationship between rock slope stability and glacial processes. An in-depth analysis of our current understanding of how glaciated rock slopes develop instability and movement during deglaciation is presented; this shows that understanding is incomplete without an appreciation of the variable mechanical behaviour of glacier ice. In this thesis, I argue that: (1) The ductile behaviour of ice at low strain rates allows movement of rock slopes buttressed by ice. Field evidence and simple force models are used to explore rate of movement of ice-contact slopes and the conditions under which they evolve. The results indicate that large rockslides can move and deform glacial ice at rates of 10-2 to 102 m-yr. This implies that ice-contact slope movement may be important for slope evolution and the erosion and entrainment processes of glaciers; and (2) the elastic strength of glacier ice at the high strain rates associated with seismic shaking enables ice to modify the response of the surrounding rock to seismic shaking. To explore this, numerical analyses of the interaction between glacial erosion, glacier mass, topography, and earthquake shaking intensity are undertaken. Shaking of mountains of variable shape and with different levels of ice inundation is simulated using FLAC 6.0. The results suggest that complete inundation by ice can significantly reduce shaking intensity. This, in combination with glacial steepening of slopes, may make recently deglaciated slopes more prone to coseismic failure. In the final chapter of the thesis, I present a conceptual model of the evolution of slope stability during stages of glaciation and deglaciation. The model incorporates the ideas presented in the thesis. I then offer recommendations for how our understanding of these processes can be further advanced.
9

Neotectonics and Paleoseismology of the Central Alpine Fault, New Zealand

De Pascale, Gregory Paul January 2014 (has links)
The Alpine Fault is a major plate boundary structure, which accommodates up to 50-80% of the total plate boundary motion across the South Island of New Zealand. The fault has not ruptured historically although limited off-fault shaking records and on-fault dating suggest large to great (~ Mw 8) earthquakes (every ~100-480 years; most recently in 1717), making it potentially one of the largest onshore sources of seismic hazard in New Zealand. The central section of the Alpine Fault, which bounds the highest elevations in the Southern Alps, is one of the most poorly characterised sections along the fault. On-fault earthquake timing in addition to the amount of dextral slip during major earthquakes was unknown along a 200-km-long section of the central Alpine Fault, while the amount of co-seismic hanging wall uplift was poorly known, prior to the present work. In this thesis I address these knowledge gaps through a combination of light detection and ranging (lidar), field, and stratigraphic mapping along with sample dating to constrain earthquake timing, style of faulting, and hanging wall rock uplift rates. Using lidar data coupled with field mapping I delineated the main trace of the Alpine Fault at Gaunt Creek as a north-striking fault scarp that was excavated and logged; this is part of a 2-km-wide restraining bend dominated by low-angle thrust faulting and without the clear strike-slip displacements that are present nearby (<5 km distant along strike in both directions). Where exposed in this scarp, the fault-zone is characterized by a distinct 5-50 cm thick clay fault-gouge layer juxtaposing hanging wall bedrock (mylonites and cataclasites) over unconsolidated late-Holocene footwall colluvium. An unfaulted peat at the base of the scarp is buried by post-most recent event (MRE) alluvium and yields a radiocarbon age of A.D. 1710–1930, consistent with sparse on-fault data, validating earlier off-fault records that suggest a 1717 MRE with a moment magnitude of Mw 8.1 ± 0.1, based on the 380-km-long surface rupture. Lidar and field mapping also enabled the identification and measurement of short (<30 m), previously unrecognized dextral offsets along the central section of the Alpine Fault. Single-event displacements of 7.5 ± 1 m for the 1717 earthquake and cumulative displacements of 12.9 ± 2 m and 22 ± 2.7 m for earlier ruptures can be binned into 7.1 ± 2.1 m increments of repeated dextral (uniform) slip along the central Alpine Fault. A comparison of these offsets with the local paleoseismic record and known plate kinematics suggests that the central Alpine Fault earthquakes in the past 1.1 ka may have: (i) bimodal character, with major surface ruptures (!Mw 7.9) every 270 ± 70 years (e.g. the 1717 event) and with moderate to large earthquakes (!Mw 7) occurring between these ruptures (e.g. the 1600 event); or (ii) that some shaking data may record earthquakes on other faults. If (i) is true, the uniform slip model (USM) perhaps best represents central Alpine Fault earthquake recurrence, and argues against the applicability of the characteristic earthquake model (CEM) there. Alternatively, if (ii) is true, perhaps the fault is “characteristic” and some shaking records proximal to plate boundary faults do not necessarily reflect plate-boundary surface ruptures. Paleoseismic and slip data suggest that (i) is the most plausible interpretation, which has implications for the understanding of major plate-boundary faults worldwide. Field mapping, geological characterisation, geophysical mapping, and optically stimulated luminescence (OSL) dating of on-fault hanging wall sediments were used to better constrain the geometry and kinematics of Holocene deformation along the rangefront of the Southern Alps at the Alpine Fault near the Whataroa River. The fault here is dextral-reverse, although primarily strike-slip with clear fault traces cutting across older surfaces of varying elevations. Deformational bulges are observed along these traces that are likely thrust-bounded. A terrace of Whataroa River sediments was found on the hanging wall of the Alpine Fault approximately ~ 55-75 m (when considering uncertainties) above the floodplain of the Whataroa River. OSL ages for a hanging wall sediments of 10.9 ± 1.0 ka for the aforementioned terrace, 2.8 ± 0.3 ka for Whataroa River terrace deposits in a deformational bulge, and 11.1 ± 1.2 ka for a rangefront derived fan indicate Holocene aggradation along the rangefront and hanging wall uplift rates of 6.0 ± 1.1 mm/yr. The sub-horizontal, laterally continuous, and planar-bedded Whataroa-sourced terrace deposits suggest that the adjacent bounding faults are steeply-dipping faults without geometries in the shallow subsurface that would tend to cause sedimentary bed rotation and tilting. Using data from the approximately 100-m deep pilot DFDP boreholes together with lidar and field mapping, I present a review of the Quaternary geology, geomorphology, and structure of the fault at Gaunt Creek, and estimate new minimum Late-Pleistocene hanging wall rock uplift rates of 5.7 ± 1.0 mm/yr to 6.3 ± 1.1 mm/yr (without considering local erosion) that suggest that the Southern Alps are in a dynamic steady state here. GPS-derived “interseismic” vertical uplift rates are < 1 mm/yr at the Alpine Fault, so the majority of rock uplift at the rangefront happens during episodic major earthquakes, confirming with on-fault data that slip occurs coseismically. Notably the uplift rates from both Mint and Gaunt Creek are consistent between the two sites although the primary style of faulting at the surface is different between the two sites, suggesting consistent coseisimc uplift of the Southern Alps rangefront along the Alpine Fault in major earthquakes. This thesis collected new on-fault datasets that confirm earlier inferences of plate-boundary fault behaviour. This study of the high-uplift central section of the Alpine Fault provides the first on-fault evidence for the MRE (i.e. 1717) and repeated of dextral slip during the MRE and previous events as well as new hanging wall uplift data which suggests that the majority of rangefront uplift occurs in earthquakes along the Alpine Fault. Because the fault has not ruptured for ~300 years, it poses a significant seismic hazard to southern New Zealand.
10

Late Pleistocene Glacial Geology of the Hope-Waiau Valley System in North Canterbury, New Zealand

Rother, Henrik January 2006 (has links)
This thesis presents stratigraphic, sedimentological and geochronological results from valley fill and glacial moraines of the Hope-Waiau Valleys in North Canterbury, New Zealand. The findings demonstrate that a substantial portion of the modern valley fill comprises in-situ sedimentary sequences that were deposited during the penultimate glaciation (OIS 6), the last interglacial (OIS 5) and during the mid-late last glacial cycle (OIS 3/2). The sediments survived at low elevations in the valley floor despite overriding by later glacial advances. Sedimentologically, the fill indicates deposition in an ice marginal zone and consists of paraglacial/distal-proglacial aggradation gravels and ice-proximal/marginal-subglacial sediments. Deposition during glacial advance phases was characterized by the sedimentation of outwash gravels and small push moraines while glacial retreat phases are dominated by glaciolacustrine deposits which are frequently interbedded with debris flow diamictons. The overall depositional arrangement indicates that glacial retreat from the lower valley portion occurred via large scale ice stagnation. Results from infra-red stimulated luminescence (IRSL) dating gives evidence for five large aggradation and degradation phases in the Hope-Waiau Valleys over the last 200 ka. Combined with surface exposure dating (SED) of moraines the geochronological results indicate that glacial advances during OIS 6 were substantially larger in both ice extent and ice volume than during OIS 4-2. The last glacial maximum (LGM) ice advance occurred prior to 20.5 ka and glacial retreat from extended ice positions began by ~18 ka BP. A late glacial re-advance (Lewis Pass advance) occurred at ~13 ka BP and is probably associated with a regional cooling event correlated to the Antarctic Cold Reversal (ACR). The findings from the Hope-Waiau Valleys were integrated into a model for glaciations in the Southern Alps which uses data from a snow mass balance model to analyse the sensitivity of glacial accumulation to temperature forcing. Model results indicate that in the central hyperhumid sector of the Southern Alps ice would expand rapidly with minor cooling (2-4℃) suggesting that full glaciation could be generated with little thermal forcing. Some Quaternary glacial advances in the Southern Alps may have been triggered by regional climate phenomena (e.g. changes in ENSO mode) rather than requiring a thermal trigger from the Northern Hemisphere.

Page generated in 0.0446 seconds