• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • Tagged with
  • 6
  • 6
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Análise da máquina de indução trifásica através das grandezas de Buchholz-Goodhue aplicando os vetores espaciais instantâneos nas condições de desequilíbrio e distorção conforme a IEEE 1459-2000 /

Motoki, Marcelo Yoshiyuki. January 2008 (has links)
Orientador: Dalgerti Lelis Milanese / Banca: Júlio Borges de Souza / Banca: Milton Itsuo Samesima / Resumo: Realiza-se neste trabalho um estudo da Teoria da Potência Complexa Instantânea aplicada na máquina de indução trifásica, onde são mostrados os vetores espaciais instantâneos (VEI's), pois estes reduzem os parâmetros para estudo (o sistema trifásico é representado por um equivalente ortogonal). Através dos vetores espaciais instantâneos serão calculadas as grandezas de Buchholz-Goodhue para a determinação do aproveitamento da linha (melhoria do fator de potência) - que são recomendados pela norma IEEE 1459-2000. A máquina estará submetida a variadas condições de assimetria e desequilíbrio possibilitando a apresentação de novos parâmetros, que serão utilizadas para a compensação harmônica. / Abstract: It takes place in this work a study of the Theory of the Instantaneous Complex Power applied will be accomplished in the three-phase induction machine, where the instantaneous space phasors are shown (ISP's), because these reduce the parameters for study (the system three-phase is represented by an equivalent orthogonal). Through the instantaneous space phasors the parameters of Buchholz- Goodhue will be calculated for the determination of the use of the line (improvement of the power factor) - that are recommended by the norm IEEE 1459-2000. The machine will be submitted to varied asymmetry conditions and unbalance making possible the presentation of new parameters, which will be used for the harmonic compensation. / Mestre
2

Generation Of 12-Sided And 18-Sided Polygonal Voltage Space Vectors For Inverter Fed Induction Motor Drives By Cascading Conventional Two-Level Inverters

Lakshminarayanan, Sanjay 06 1900 (has links)
Multi-level inverters play a significant role in high power drive systems for induction motors. Interest in multi-level inverters started with the three-level, neutral point clamped (NPC) inverter. Now there are many topologies for higher number of levels such as the, flying capacitor and cascaded H-bridge etc. The advantage of multi-level inverters is the reduced voltage stress on the switching devices, lower dv/dt and lower harmonic content. The voltage space vector structure in a multi-level inverter has a hexagonal periphery similar to that in a two-level inverter. In the over-modulation region in multi-level inverters, there is the presence of lower order harmonics such as 5th and 7th in the output voltage, and this can be avoided by using a voltage space vector scheme with more than six polygonal voltage space vectors such as 12, 18, 24 etc. These polygonal voltage space vectors can be generated by using multi-level inverter topologies, by cascading two-level inverter structures with asymmetric DC-links. This thesis deals with the development of 12-sided and 18-sided polygonal voltage space vector schemes for induction motor drives. With the 12-sided polygonal structure, all the 5th and 7th harmonic orders and 6n±1, n=1, 3, 5.. are absent throughout the modulation range, and in the 18-sided voltage space vector scheme, 5th, 7th, 11th and 13th harmonics are absent throughout the modulation range. With the absence of the low order frequencies in the proposed polygonal space vector structures, high frequency PWM schemes are not needed for voltage control. This is an advantage over conventional schemes. Also, due to the absence of lower order harmonics throughout the modulation range, special compensated synchronous reference frame PI controllers are not needed in current controlled vector control schemes in over-modulation. In this thesis a method is proposed for generating 12-sided polygonal voltage space vectors for an induction motor fed from one side. A cascaded combination of three two-level inverters is used with asymmetrical DC-links. A simple space vector PWM scheme based only on the sampled reference phase amplitudes are used for the inverter output voltage control. The reference space vector is sampled at different sampling rates depending on the frequency of operation. The number of samples in a sector is chosen to keep the overall switching frequency around 1kHz, in order to minimize switching losses. The voltage space vectors that make up the two sides of the sector in which the reference vector lies, are time averaged using volt-sec balance, to result in the reference vector. In the proposed 12-sided PWM scheme all the harmonics of the order 6n±1, n=1, 3, 5... are eliminated from the phase voltage, throughout the modulation range. In multi-level inverters steps are taken to eliminate common-mode voltage. Common-mode voltage is defined as one third of the sum of the three pole voltages of the inverter for a three phase system. Bearings are found to fail prematurely in drives with fast rising voltage pulses and high frequency switching. The alternating common-mode voltage generated by the PWM inverter contributes to capacitive couplings from stator body to rotor body. This generates motor shaft voltages causing bearing currents to flow from rotor to stator body and then to the ground. There can be a flashover between the bearing races. Also a phenomenon termed EDM (Electro-discharge machining) effect occurs and may damage the bearings. Common-mode voltage has to be eliminated in order to overcome these effects. In multi-level inverters redundancy of space vector locations is used to eliminate common-mode voltages. In the present thesis a 12-sided polygonal voltage space vector based inverter with an open-end winding induction motor is proposed, in which the common-mode voltage variation at the poles of the inverter is eliminated. In this scheme, there is a three-level inverter on each side of the open-end winding of the induction motor. The three-level inverter is made by cascading two, two-level inverters with unequal DC-link voltages. Appropriate space vectors are selected from opposite sides such that the sum of the pole voltages on each side is a constant. Also during the PWM operation when the zero vector is applied, identical voltage levels are used on both sides of the open-end windings, in order to make the phase voltages zero, while the common-mode voltage is kept constant. This way, common-mode voltage variations are eliminated throughout the modulation range by appropriately selecting the voltage vectors from opposite ends. In this method all the harmonics of 6n±1, n=1, 3, 5.. and triplen orders are eliminated. In the 12-sided polygonal voltage space vector methods, the 11th and 13th harmonics though attenuated are not eliminated. In the 18-sided polygonal voltage space vector method the 11th and 13th harmonics are eliminated along with the 5th and 7th harmonics. This scheme consists of an open-end winding induction motor fed from one side by a two-level inverter and the other side by a three-level inverter comprising of two cascaded two-level inverters. Asymmetric DC-links of a particular ratio are present. The 12-sided and 18-sided polygonal voltage space vector methods have been first simulated using SIMULINK and then verified experimentally on a 1.5kW induction motor drive. In the simulation as well as the experimental setup the starting point is the generation of the three reference voltages v, vB and vC . A method for determining the sector in which the reference vector lies by comparing the values of the scaled sampled instantaneous reference voltages is proposed. For the reference vector lying in a sector between the two active vectors, the first vector is to be kept on for T1 duration and the second vector for T2 duration. These timing durations can be found from the derived formula, using the sampled instantaneous values of the reference voltages and the sector information. From the pulse widths and the sector number, the voltage level at which a phase in the inverter has to be maintained is uniquely determined from look-up tables. Thus, once the pole voltages are determined the phase voltages can be easily determined for simulation studies. By using a suitable induction motor model in the simulation, the effect of the PWM scheme on the motor current can be easily obtained. The simulation studies are experimentally verified on a 1.5kW open-end winding induction motor drive. A V/f control scheme is used for the study of the drive scheme for different speeds of operation. A DSP (TMS320LF2407A) is used for generating the PWM signals for variable speed operation. The 12-sided polygonal voltage space vector scheme with the motor fed from a single side has a simple power bus structure and it is also observed that the pole voltage is clamped to zero for 30% of the time duration of one cycle of operation. This will increase the overall efficiency. The proposed scheme eliminates all harmonics of the order 6n±1, n=1, 3, 5…for the complete modulation range. The 12-sided polygonal voltage space vector scheme with common-mode elimination requires the open-end winding configuration of the induction motor. Two asymmetrical DC-links are required which are common to both sides. The leg of the high voltage inverter is seen to be switched only for 50% duration in a cycle of operation. This will also reduce switching losses considerably. The proposed scheme not only eliminates all harmonics of the order 6n±1, n=1, 3, 5…for the complete modulation range, but also maintains the common-mode voltage on both sides constant. The common-mode voltage variation is eliminated. This eliminates bearing currents and shaft voltages which can damage the motor bearings. In the 18-sided polygonal voltage space vector based inverter, the 11th and 13th harmonics are eliminated along with the 5th and 7th. Here also an open-end winding induction motor is used, with a two-level inverter on one side and a three-level inverter on the other side. A pole of the two-level inverter is at clamped to zero voltage for 50% of the time and a pole of the three-level inverter is clamped to zero for 30% of the time for one cycle of operation. The 18-sided polygonal voltage space vectors show the highest maximum peak fundamental voltage in the 18-step mode of 0.663Vdc compared to 0.658Vdc in the 12-step mode of the 12-sided polygonal voltage space vector scheme and 0.637Vdc in the six-step mode of a two-level inverter or conventional multi-level inverter (where Vdc is the radius of the space vector polygon). Though the schemes proposed are verified on a low power laboratory prototype, the principle and the control algorithm development are general in nature and can be easily extended to induction motor drives for high power applications.
3

Análise da máquina de indução trifásica através das grandezas de Buchholz-Goodhue aplicando os vetores espaciais instantâneos nas condições de desequilíbrio e distorção conforme a IEEE 1459-2000

Motoki, Marcelo Yoshiyuki [UNESP] 09 June 2008 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:22:36Z (GMT). No. of bitstreams: 0 Previous issue date: 2008-06-09Bitstream added on 2014-06-13T18:06:43Z : No. of bitstreams: 1 motoki_my_me_ilha.pdf: 675184 bytes, checksum: e172c8abc0127eb211d92ea44339f645 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Realiza-se neste trabalho um estudo da Teoria da Potência Complexa Instantânea aplicada na máquina de indução trifásica, onde são mostrados os vetores espaciais instantâneos (VEI´s), pois estes reduzem os parâmetros para estudo (o sistema trifásico é representado por um equivalente ortogonal). Através dos vetores espaciais instantâneos serão calculadas as grandezas de Buchholz-Goodhue para a determinação do aproveitamento da linha (melhoria do fator de potência) - que são recomendados pela norma IEEE 1459-2000. A máquina estará submetida a variadas condições de assimetria e desequilíbrio possibilitando a apresentação de novos parâmetros, que serão utilizadas para a compensação harmônica. / It takes place in this work a study of the Theory of the Instantaneous Complex Power applied will be accomplished in the three-phase induction machine, where the instantaneous space phasors are shown (ISP´s), because these reduce the parameters for study (the system three-phase is represented by an equivalent orthogonal). Through the instantaneous space phasors the parameters of Buchholz- Goodhue will be calculated for the determination of the use of the line (improvement of the power factor) - that are recommended by the norm IEEE 1459-2000. The machine will be submitted to varied asymmetry conditions and unbalance making possible the presentation of new parameters, which will be used for the harmonic compensation.
4

Estratégias de modelagem dinâmica e simulação computacional do motor de indução trifásico. / Strategies of dynamic modelling and computational simulation of the three-phase induction motor.

Cad, Marcelo Machado 07 August 2000 (has links)
Nesse trabalho procede-se a modelagem e simulação do motor de indução trifásico considerando-se as notações trifásicas, ortogonais, vetoriais e complexas, mos-trando seus equacionamentos e também o resultado das simulações. Para a simulação foram usados alguns programas de domínio da área acadêmica, comparando seus desempenhos quanto à apresentação de resultados e também tempo de processamen-to. Este trabalho apresenta também, um enfoque para o método de simulação do mo-tor de indução trifásico utilizando a notação vetorial complexa, o qual é baseado na notação vetorial do motor de indução que é caracterizado por grandezas complexas. Essa técnica é obtida através de simples manipulações das equações vetoriais do modelo do motor de indução compondo uma equação de estado complexa. Com o auxílio do programa Matlab, consegue-se simular o motor de indução trifásico sem a necessidade de separar os termos complexos em duas equações reais, relativas as partes real e imaginária. O que além de simplificar o procedimento de simulação também contribui para a construção do diagrama de blocos para poder entender melhor o comportamento do modelo estudado. São apresentadas no final do trabalho, as conclusões obtidas e, também, sugestões tanto para continuação do trabalho, quanto novas linhas de pesquisas. / In this work it is carried out the modelling and simulation of the three-phase induction motor. It's considered three-phase, orthogonal, vectorial and complex notations, showing the different model equations and the result of the computational simulations. For the simulation it was used different software’s of the academic area, and its results and computational performance are compared. This work gives em-phasis to in new modelling procedure by using complex vector notation. This new method is based on the vectorial notation of the induction motor, which is characterized by complex entities. Through simple manipulations of complex vector equation of the dynamic induction motor equation, it is possible to compose a complex space-state equation. This complex model come be solved with Matlab software without the separation of its complex terms in two real equations. Other advantage of the complex model is the simplifying the simulation procedure and the possibilities of the blocks diagram representation. The final conclusions and suggestions for con-tinuation are presented in the end of work.
5

Estratégias de modelagem dinâmica e simulação computacional do motor de indução trifásico. / Strategies of dynamic modelling and computational simulation of the three-phase induction motor.

Marcelo Machado Cad 07 August 2000 (has links)
Nesse trabalho procede-se a modelagem e simulação do motor de indução trifásico considerando-se as notações trifásicas, ortogonais, vetoriais e complexas, mos-trando seus equacionamentos e também o resultado das simulações. Para a simulação foram usados alguns programas de domínio da área acadêmica, comparando seus desempenhos quanto à apresentação de resultados e também tempo de processamen-to. Este trabalho apresenta também, um enfoque para o método de simulação do mo-tor de indução trifásico utilizando a notação vetorial complexa, o qual é baseado na notação vetorial do motor de indução que é caracterizado por grandezas complexas. Essa técnica é obtida através de simples manipulações das equações vetoriais do modelo do motor de indução compondo uma equação de estado complexa. Com o auxílio do programa Matlab, consegue-se simular o motor de indução trifásico sem a necessidade de separar os termos complexos em duas equações reais, relativas as partes real e imaginária. O que além de simplificar o procedimento de simulação também contribui para a construção do diagrama de blocos para poder entender melhor o comportamento do modelo estudado. São apresentadas no final do trabalho, as conclusões obtidas e, também, sugestões tanto para continuação do trabalho, quanto novas linhas de pesquisas. / In this work it is carried out the modelling and simulation of the three-phase induction motor. It's considered three-phase, orthogonal, vectorial and complex notations, showing the different model equations and the result of the computational simulations. For the simulation it was used different software’s of the academic area, and its results and computational performance are compared. This work gives em-phasis to in new modelling procedure by using complex vector notation. This new method is based on the vectorial notation of the induction motor, which is characterized by complex entities. Through simple manipulations of complex vector equation of the dynamic induction motor equation, it is possible to compose a complex space-state equation. This complex model come be solved with Matlab software without the separation of its complex terms in two real equations. Other advantage of the complex model is the simplifying the simulation procedure and the possibilities of the blocks diagram representation. The final conclusions and suggestions for con-tinuation are presented in the end of work.
6

Investigations On Boundary Selection For Switching Frequency Variation Control Of Current Error Space Phasor Based Hysteresis Controllers For Inverter Fed IM Drives

Ramchand, Rijil 07 1900 (has links) (PDF)
Current-Controlled Pulse Width Modulated (CC-PWM) Voltage Source Inverters (VSIs) are extensively employed in high performance drives (HPD) because of the considerable advantages offered by them, such as, excellent dynamic response and inherent over-current protection, as compared to the voltage-controlled PWM (VC-PWM) VSIs. Amongst the different types of CC-PWM techniques, hysteresis current controllers offer significant simplicity in implementation. However, conventional type of hysteresis controllers (with independent comparators) suffers from some well-known drawbacks, such as, limit cycle oscillations (especially at lower speeds of operation of machine), overshoot in current error, generation of sub-harmonic components in the current, and random (non-optimum) switching of inverter voltage vectors. Common problems associated with the conventional, as well as current error space phasor based hysteresis controllers with fixed bands (boundary), are the wide variation of switching frequency in the fundamental output cycle and variation of switching frequency with the change in speed of the load motor. These problems cause increased switching losses in the inverter, non-optimum current ripple, excess harmonics in the load current and subsequent additional machine heating. A continuously varying parabolic boundary for the current error space phasor is proposed previously to get the switching frequency variation pattern of the output voltage of the hysteresis controller based PWM inverter similar to that of voltage controlled space vector PWM (VC SVPWM) based VSI. But the major problem associated with this technique is the requirement of two outer parabolas outside the current error space phasor boundary for the identification of sector change which gives rise to some switching frequency variations in one fundamental cycle and over the entire operating speed range. It also introduces 5th and 7th harmonic components in the voltage causing 5th and 7th harmonic currents in the induction motor. These harmonic currents causes 6th harmonic torque pulsations in the machine. This thesis proposes a new technique which replaces the outer parabolas and uses current errors along orthogonal axes for detecting the sector change, so that a fast and accurate detection of sector change is possible. This makes the voltage harmonic spectrum of the proposed hysteresis controller based inverter exactly matching with that of a constant switching frequency SVPWM based inverter. This technique uses the property that the current error along one of the orthogonal axis changes its direction during sector change. So the current error never goes outside the parabolic boundary as in the case of outer parabolas based sector change technique. So the proposed new technique for sector change eliminates the 5th and 7th harmonic components from the applied voltage and thus eliminates the 5th and 7th harmonic currents in the motor. So there will be no introduction of 6th harmonic torque pulsations in the motor. Using the proposed scheme for sector change and parabolic boundary for current error space phasor, simulation study was carried out using Matlab-Simulink. Simulation study showed that the switching frequency variations in a fundamental cycle and over the entire speed range of the machine upto six step mode operation is similar to that of a VC-SVPWM based VSI. The proposed hysteresis controller is experimentally verified on a 3.7 kW IM drive fed with a two-level VSI using vector control. The proposed current error space phasor based hysteresis controller providing constant switching frequency is completely implemented on the TI TMS320LF2812 DSP controller platform. The three-phase reference currents are generated depending on the frequency command and the controller is tested with drive for the entire operating speed range of the machine in forward and reverse directions. Steady state and transient results of the proposed drive are presented in this thesis. This thesis also proposes a new hysteresis controller which eliminates parabolic boundary and replaces it with a simple online computation of the boundary. In this proposed new hysteresis controller the boundary computed in the present sampling interval is used for identifying next vector to be switched. This thesis gives a detailed mathematical explanation of how the boundary is computed and how it is used for selecting vector to be switched in a sector. It also explains how the sector in which stator voltage vector is present is determined. The most important part of this proposed hysteresis controller is the estimation of stator voltages along alpha and beta axes during active and zero vector periods. Estimation of stator voltages are carried out using current errors along alpha and beta axes and steady state equivalent circuit of induction motor. Using this estimated stator voltages along alpha and beta axes, instantaneous phase voltages are computed and used for finding individual voltage vector switching times. These switching times are used for the computation of hysteresis boundary for individual vectors. So the hysteresis boundary for individual vectors are exactly calculated and used for vector change detection, making phase voltage harmonic spectrum exactly similar to that of constant switching frequency VC SVPWM inverter. Sector change detection is very simple, since we have the estimated stator voltages along alpha and beta axes to give exact position of stator voltage vector. Simulation study to verify the steady state as well as transient performance of the proposed controller based VSI fed IM drive is carried out using Simulink tool box of Matlab Simulation Software. The proposed hysteresis controller is experimentally verified on a 3.7 kW IM drive fed with a two-level VSI using vector control. The proposed current error space phasor based hysteresis controller providing constant switching frequency profile for phase voltage is implemented on the TI TMS320LF2812 DSP controller platform. The three-phase reference currents are generated depending on the frequency command and the proposed hysteresis controller is tested with drive for the entire operating speed range of the machine in forward and reverse directions. Steady state and transient results of the proposed drive are presented for different operating conditions.

Page generated in 0.051 seconds