• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 2
  • 1
  • Tagged with
  • 14
  • 14
  • 14
  • 14
  • 7
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Low-complexity iterative receivers for multiuser space-time block coding systems

Yang, Yajun 31 October 2006
Iterative processing has been shown to be very effective in multiuser space-time block coding (STBC) systems. The complexity and efficiency of an iterative receiver depend heavily on how the log-likelihood ratios (LLRs) of the coded bits are computed and exchanged at the receiver among its three major components, namely the multiuser detector, the maximum a posterior probability (MAP) demodulators and the MAP channel decoders. This thesis first presents a method to quantitatively measure the system complexities with floating-point operations (FLOPS) and a technique to evaluate the iterative receiver's convergence property based on mutual information and extrinsic information transfer (EXIT) charts.<p>Then, an integrated iterative receiver is developed by applying the sigma mappings for M-ary quadrature amplitude modulation (M-QAM) constellations. Due to the linear relationship between the coded bits and the transmitted channel symbol, the multiuser detector can work on the bit-level and hence improves the convergence property of the iterative receiver. It is shown that the integrated iterative receiver is an attractive candidate to replace the conventional receiver when a few receive antennas and a high-order M-QAM constellation are employed.<p> Finally, a more general two-loop iterative receiver is proposed by introducing an inner iteration loop between the MAP demodulators and the MAP convolutional decoders besides the outer iteration loop that involves the multiuser detection (MUD) as in the conventional iterative receiver. The proposed two-loop iterative receiver greatly improves the iteration efficiency. It is demonstrated that the proposed two-loop iterative receiver can achieve the same asymptotic performance as that of the conventional iterative receiver, but with much less outer-loop iterations.
2

Low-complexity iterative receivers for multiuser space-time block coding systems

Yang, Yajun 31 October 2006 (has links)
Iterative processing has been shown to be very effective in multiuser space-time block coding (STBC) systems. The complexity and efficiency of an iterative receiver depend heavily on how the log-likelihood ratios (LLRs) of the coded bits are computed and exchanged at the receiver among its three major components, namely the multiuser detector, the maximum a posterior probability (MAP) demodulators and the MAP channel decoders. This thesis first presents a method to quantitatively measure the system complexities with floating-point operations (FLOPS) and a technique to evaluate the iterative receiver's convergence property based on mutual information and extrinsic information transfer (EXIT) charts.<p>Then, an integrated iterative receiver is developed by applying the sigma mappings for M-ary quadrature amplitude modulation (M-QAM) constellations. Due to the linear relationship between the coded bits and the transmitted channel symbol, the multiuser detector can work on the bit-level and hence improves the convergence property of the iterative receiver. It is shown that the integrated iterative receiver is an attractive candidate to replace the conventional receiver when a few receive antennas and a high-order M-QAM constellation are employed.<p> Finally, a more general two-loop iterative receiver is proposed by introducing an inner iteration loop between the MAP demodulators and the MAP convolutional decoders besides the outer iteration loop that involves the multiuser detection (MUD) as in the conventional iterative receiver. The proposed two-loop iterative receiver greatly improves the iteration efficiency. It is demonstrated that the proposed two-loop iterative receiver can achieve the same asymptotic performance as that of the conventional iterative receiver, but with much less outer-loop iterations.
3

Integration of Space-Time Differential Coding and Complementary Code Based CDMA

Liu, Ming-Jiun 02 September 2006 (has links)
Differential space time block coding is a technology that combining traditional space time block coding and differential coding. Differential space time block coding could exploit full spatial diversity gain where the channel state information is not known. Each user in CC-CDMA system is assigned a fold of codes which sent via different carriers to reconstruct perfect auto-correlation and cross-correlation function. Complete Complementary codes could offer MAI-free and MI-free operation for DS-spreading. In this thesis we combine differential space time block coding and CC-CDMA, and discuss the character of the system.
4

High-Rate Space-Time Block Codes in Frequency-Selective Fading Channels

Chu, Alice Pin-Chen January 2012 (has links)
The growing popularity of wireless communications networks has resulted in greater bandwidth contention and therefore spectrally efficient transmission schemes are highly sought after by designers. Space-time block codes (STBCs) in multiple-input, multiple-output (MIMO) systems are able to increase channel capacity as well as reduce error rate. A general linear space-time structure known as linear dispersion codes (LDCs) can be designed to achieve high-data rates and has been researched extensively for flat fading channels. However, very little research has been done on frequency-selective fading channels. The combination of ISI, signal interference from other transmitters and noise at the receiver mean that maximum likelihood sequence estimation (MLSE) requires high computational complexity. Detection schemes that can mitigate the signal interference can significantly reduce the complexity and allow intersymbol interference (ISI) equalization to be performed by a Viterbi decoder. In this thesis, detection of LDCs on frequency-selective channels is investigated. Two predominant detection schemes are investigated, namely linear processing and zero forcing (ZF). Linear processing depends on code orthogonality and is only suited for short channels and small modulation schemes. ZF cancels interfering signals when a sufficient number of receive antennas is deployed. However, this number increases with the channel length. Channel decay profiles are investigated for high-rate LDCs to ameliorate this limitation. Performance improves when the equalizer assumes a shorter channel than the actual length provided the truncated taps carry only a small portion of the total channel power. The LDC is also extended to a multiuser scenario where two independent users cooperate over half-duplex frequency-selective channels to achieve cooperative gain. The cooperative scheme transmits over three successive block intervals. Linear and zero-forcing detection are considered.
5

New Low-Complexity Space-time Coded MIMO-CDMA System Design With Semi- blind Channel Estimation in Multipath Channel

Hung, Yu-Chian 27 August 2010 (has links)
In this thesis, we present a new low-complexity receiver with the modified hybrid signature direct-sequence code division multiple access (DS-CDMA) system framework that use the multiple-input multiple-output (MIMO) antennas along with Alamouti¡¦s space-time block code (ST-BC). In the transceiver, the modified hybrid signature is exploited. It is not only used to counteract the inter-symbol interference (ISI) introduced by the channel fading duo to multipath propagation but also very useful for extracting the full channel information in the receiver. For reducing computational complexity, we propose a new modified partial adaptivity (MPA) filter. It is not only having the advantage of subspace-based PA-GSC filter to enhance the system performance but also avoid the computation requirement when the Eigen-decomposition approach was adopted. Next, with the modified transceiver framework, in the receiver, based on the linearly constrained constant modulus (LCCM) criterion, we propose a novel semi-blind multiple detector schemes for MIMO-CDMA systems, which is implementing with the adaptive RLS algorithm and framework in the modified partially adaptive (MPA) generalized sidelobe canceller (GSC) . Our proposed scheme is able to perform the two-branch filterbank of LCCM MIMO-CDMA receiver. Computer simulations demonstrate that the proposed receiver has better performance than the convention CM-GSC-RLS receiver with much lower computational load.
6

Pseudo Random Cyclic Postfix ST-BC MIMO-OFDM Systems with GSC-Based Equalizer

Tsai, Meng-Han 27 August 2011 (has links)
The Orthogonal frequency division multiplexing (OFDM) technique has been intensively used in many wireless communication systems to achieve higher data rate transmissions. Due to the fact that the OFDM technique entails redundant block transmissions; the transmitted blocks suffer from the inter-symbol interference (ISI) and inter-block interference (IBI). To compensate this serious effect, in many literatures redundant symbols (or guard interval) with adequate length are inserted in the transmitted symbols to prevent the IBI. Also, in the receiver the equalizer can be employed to deal with ISI. In this thesis, we present a new pseudo random cyclic-postfix (PRCP-) OFDM associated with the multiple-input multiple-output (MIMO) antenna system configuration to further improve the system performance. In fact, the MIMO system can enhance channel capacity and achieve high data-rate. The above-mentioned PRCP-OFDM technique combines with the MIMO antennas system, through the appropriate model design can be used to combat the multi-path effect or the inter-block interference. As evident from the simulation results, the proposed ST-BC MIMO PRCP-OFDM system can avoid the interference of transmitted signals during the estimation of channel impulse response (CIR) with proposed cyclic-postfix sequences. In addition, to further improve and eliminate the residual IBI and ICI, the equalizer with the framework of the generalized sidelobe canceller (GSC) is considered. Specifically, when SNR grows, the proposed ST-BC MIMO PRCP-OFDM system can perform successfully in terms of symbol-error rate and semi-blind channel estimation. This is verified via the computer simulations.
7

Space-Time Block Coded OFDM Systems with Pseudo Random Cyclic Postfix

Li, You-De 04 August 2008 (has links)
Orthogonal frequency division multiplexing (OFDM) due to the robustness to the effect of multipath fading and having high spectral efficiency, it has become a good candidate of wireless communications systems. The block transmission of signal-blocks through the channel will suffer from the inter-block interference (IBI) and inter-symbol interference (ISI). Usually in the transmitter of the OFDM systems, redundancy (or guard interval), such cyclic prefix (CP) or zero padding (ZP), with sufficient length, is inserted in the transmitted block to avoid the IBI. In this thesis, we propose a novel pseudo random cyclic postfix (PRCP-) OFDM system configuration, which adopts the PRCP as redundancy and combines with multiple antennas. In fact, the multiple transmit antenna and multiple receive antenna, which exploits the spatial diversity, can be used to further enhance the channel capacity and achieve high data-rate. The main property of PRCP-OFDM modulation is that it exploits the cyclic-postfix sequences to estimate channel information with a low complexity method. Compared with CP-OFDM, it overcomes the channel null problem. For ZP-OFDM, it uses the additional information to estimate channel which is replaced by zero samples in ZP-OFDM. Moreover, PRCP-OFDM avoids the interference of signals to the desired postfix when we estimate channel impulse response (CIR) and which is different from pseudo random postfix (PRP-) OFDM [8]. Thus, as SNR grows, PRCP-OFDM can have better performance than PRP-OFDM. With the help of [9], [12] and [13], we extend the PRCP-OFDM to the MIMO case with space-time block coding. Via computer simulation, we verify that the performance is improved, in terms of the accuracy of channel estimation and symbol error rate (SER).
8

The Space-Time Block Coded in Pseudo Random Cyclic Postfix OFDM Systems with Blind Channel Shortening Algorithm

Chang, Chun-Yi 18 August 2009 (has links)
The Orthogonal frequency division multiplexing (OFDM) modulator with redundancy has been adopted in many wireless communication systems for higher data rate transmissions .The block transmission of signal-blocks through the channel will suffer from the inter-block interference (IBI) and inter-symbol interference (ISI). In the traditional transmitter of the OFDM systems, redundancy (or guard interval), such cyclic prefix (CP) or zero padding (ZP), with sufficient length, is inserted in the transmitted block to avoid the IBI. In this thesis, we propose a novel pseudo random cyclic postfix (PRCP-) OFDM system configuration and joint a blind channel shortening algorithm which named MERRY algorithm [18], which adopts the PRCP as redundancy and combines with multiple antennas. In fact, the multiple input and multiple output (MIMO) system, which exploits the spatial diversity, it can be used to further enhance the channel capacity and achieve high data-rate, and we extend the PRCP-OFDM to the MIMO case with space-time block coding. In redundancy insufficient case, the blind channel shortening algorithm be adopted for suppressing the IBI. The main property of PRCP-OFDM modulation is that it exploits the cyclic-postfix sequences to estimate channel information with a low complexity method. For CP-OFDM, it overcomes the channel null problem. Compared with ZP-OFDM, it uses the additional information to estimate channel which is replaced by zero samples in ZP-OFDM. Moreover, PRCP-OFDM avoids the interference of signals to the desired postfix when we estimate channel impulse response (CIR) and which is different from pseudo random postfix (PRP-) OFDM [8]. Thus, when SNR grows, PRCP-OFDM can have better performance than PRP-OFDM. With the help of [9], [12] and [13]. Via computer simulation, we verify that the performance is improved.
9

Novel Blind ST-BC MIMO-CDMA Receiver with Adaptive Constant Modulus-GSC-RLS Algorithm in Multipath Channel

Cheng, Ming-Kai 18 August 2009 (has links)
In this thesis, we present a new hybrid pre-coded direct-sequence code division multiple access (DS-CDMA) system framework that use the multiple-input multiple-output (MIMO) antennas along with Alamouti¡¦s space-time block code (ST-BC). In the transmitter, the idea of hybrid pre-coded is exploited. It not only used to counteract the inter-symbol interference (ISI) introduced by the channel fading duo to multipath propagation but also very useful for exacting the phase of channel by appropriate design, which is not adopted in the conventional blind receiver. Under this structure, we propose a new blind adaptive MIMO-CDMA receiver based on the linearly constrained constant modulus (LCCM) criterion. To reduce the complexity of receiver design, framework of the generalized sidelobe canceller (GSC) associated with the recursive least square (RLS) algorithm is adopted for implementing the LCCM MIMO-CDMA receiver, and use gradient method to track the desired user¡¦s amplitude, simultaneously. Via computer simulations, advantages of the proposed scheme will be verified. Compared to the conventional blind Capon receiver, we will show that the performance of the proposed scheme is more robust against inaccuracies in the acquisition of the desired user¡¦s timing.
10

Design of Minimum BER Linear Space-Time Block Codes for MIMO Systems Equipped with Zero-Forcing Equalizer{Correlated Channels

Wang, Lisha 10 1900 (has links)
<p>In this thesis, we consider a coherent MIMO system, emphasizing on the simplicity of implementation at both the code generator and the receiver. Specifically, we consider the transmission of a space-time block code (STBC) that is a linear combination of coding matrices weighted by the information symbols through a receiver-correlated flat-fading channel and received by a linear ZF detector. Our target is the design of a code which, while maintaining full data-transmission rate, minimizes the asymptotic average (over all the random channel coefficients) bit error probability of an ZF detector. To this end, we first ensure that the full data rate of symbols is maintained, and then, based on the BER for 4-QAM signals, we derive the conditions for optimal codes and establish a code structure that minimizes the asymptotic average bit error probability. We also prove that the diversity gain of our M × N MIMO system is N − M + 1. The resulting optimum code structure requires the individual coding matrices to be mutually orthogonal when vectorized and is related to covariance matrix of correlated channel. The first optimum structural characteristics of the coding matrices is described as trace-orthogonal. A new approach to express expected value of random correlated channel has been proposed as well. From simulation results we can see that advantage of optimum code over uncoded system is more apparent as channel correlation is higher.</p> / Master of Applied Science (MASc)

Page generated in 0.4079 seconds