• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 6
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

New Low-Complexity Space-time Coded MIMO-CDMA System Design With Semi- blind Channel Estimation in Multipath Channel

Hung, Yu-Chian 27 August 2010 (has links)
In this thesis, we present a new low-complexity receiver with the modified hybrid signature direct-sequence code division multiple access (DS-CDMA) system framework that use the multiple-input multiple-output (MIMO) antennas along with Alamouti¡¦s space-time block code (ST-BC). In the transceiver, the modified hybrid signature is exploited. It is not only used to counteract the inter-symbol interference (ISI) introduced by the channel fading duo to multipath propagation but also very useful for extracting the full channel information in the receiver. For reducing computational complexity, we propose a new modified partial adaptivity (MPA) filter. It is not only having the advantage of subspace-based PA-GSC filter to enhance the system performance but also avoid the computation requirement when the Eigen-decomposition approach was adopted. Next, with the modified transceiver framework, in the receiver, based on the linearly constrained constant modulus (LCCM) criterion, we propose a novel semi-blind multiple detector schemes for MIMO-CDMA systems, which is implementing with the adaptive RLS algorithm and framework in the modified partially adaptive (MPA) generalized sidelobe canceller (GSC) . Our proposed scheme is able to perform the two-branch filterbank of LCCM MIMO-CDMA receiver. Computer simulations demonstrate that the proposed receiver has better performance than the convention CM-GSC-RLS receiver with much lower computational load.
2

Multiuser Interference Cancellation in Multicarrier CDMA System with Constrained Adaptive Inverse QRD-RLS Algorithm

Liao, Tai-Yin 09 July 2001 (has links)
In this thesis, the multi-carrier (MC) code division multiple access (CDMA) system is considered in Rayleigh fading channel. The main concern of this thesis is to devise a new direct linearly constrained constant modulus (LCCM) inverse QRD-RLS algorithm for multiple access interference (MAI) cancellation and the problem due to the mismatch of the channel estimator. In the conventional approach, two significant detectors are applied to the system for multiuser interference suppression, one is the blind adaptation algorithm and the other is adaptive linearly constrained PLIC approach. However, the mirror effect may occur when the blind adaptation algorithm is employed. It might affect the performance in terms of bit error rate (BER), although the desired signal to interference (due to other users) improvement is still acceptable. Moreover, in case that the channel coefficients could not be estimated perfectly, the mismatch problem may occur to degrade the performance of the adaptive linearly constrained PLIC approach with the LMS or RLS algorithm. To overcome the mismatch problem, the conventional approach is to use the LCCM criterion with gradient algorithm. However, the convergence rate of the gradient algorithm is too slow to be implemented in real-time wireless communication system. In this thesis, to have fast convergence rate and to circumvent the mismatch problem, the robust LCCM-IQRD algorithm is devised and applied to the MC-CDMA system in Rayleigh fading channel. The proposed robust LCCM-IQRD algorithm has shown to be more effective in terms of MAI cancellation and the mismatch due to imperfect channel estimator. The performance, in terms of BER, of the proposed algorithm is superior to that of the conventional PLIC based algorithms, the blind adaptation algorithm, and the conventional LCCM gradient algorithm.
3

Wavelet-Based Multiuser MC-CDMA Receiver with Linearly Constrained Constant Modulus Inverse QRD-RLS Algorithm

Liu, Hsiao-Chen 07 July 2002 (has links)
In this thesis, the problem of multiple access interference (MAI) suppression for the multi-carrier (MC) code division multiple access (CDMA) system, based on the wavelet-based (WB) multi-carrier modulation, associated with the combining process is investigated for Rayleigh fading channel. The main concern of this thesis is to derive a new scheme, based on the linearly constrained constant modulus (LCCM) criterion with the robust inverse QR decomposition (IQRD) recursive least squares (RLS) algorithm to improve the performance of the conventional MC-CDMA system with combining process. To verify the merits of the new algorithm, the effect due to imperfect channel parameters estimation and frequency offset are investigated. We show that the proposed robust LCCM IQRD-RLS algorithm outperforms the conventional LCCM-gradient algorithm [6], in terms of output SINR, improvement percentage index (IPI), and bit error rate (BER) for MAI suppression under channel mismatch environment. Also, the performance of the WB MC-CDMA system is superior to the one with conventional MC-CDMA system. It is more robust to the channel mismatch and frequency offset. Moreover, the WB MC-CDMA system with robust LCCM IQRD-RLS algorithm does have better performance over other conventional approaches, such as the LCCM-gradient algorithm, maximum ratio combining (MRC), blind adaptation algorithm and partitioned linear interference canceller (PLIC) approach with LMS algorithm, in terms of the capability of MAI suppression and bit error rate (BER).
4

Blind Adaptive MIMO-CDMA Receiver with Constant Modulus Criterion in Multipath Channels

Chao, Po-sun 23 July 2008 (has links)
In recent years, demands on all kinds of wireless communications become heavier due to the developments of new services and devices. At the same time, future wireless networks are expected to provide services with high quality and data rate. A possible solution which can attain these objectives is wireless communication systems that use multiple-input multiple-output (MIMO) antennas along with Alamouti¡¦s space-time block code and direct-sequence code division multiple access (DS-CDMA) modulation technique. In such systems, spatial diversity rendered by multiple antennas as well as coding in spatial and time domains are the keys to improve quality of transmission. Many multiuser detection techniques for the space-time block coded CDMA systems have been investigated. In [8], the blind Capon receiver was proposed, which consists of a two-branch filterbank followed by the blind Capon channel estimator. The design of blind Capon receiver is based on linearly constrained minimum variance (LCMV) criterion, which is known to be sensitive to inaccuracies in the acquisition or tracking of the desired user's timing, referred to as mismatch effect. In other words, the LCMV-based receiver may perform undesirably under mismatch effect. In this thesis, we propose a new blind adaptive MIMO-CDMA receiver based on the linearly constrained constant modulus (LCCM) criterion. This work is motivated by the robustness of LCCM approach to the mismatch effect. To reduce the complexity of receiver design, framework of the generalized sidelobe canceller (GSC) associated with the recursive least squares (RLS) algorithm is adopted for implementing the adaptive LCCM MIMO-CDMA filterbank. Based on the GSC-RLS structure, we derive the proposed MIMO CM-GSC-RLS algorithm. For the purpose of comparison, an adaptive implementation of the blind Capon receiver proposed in [8] is also derived, which is referred to as the MIMO MV-GSC-RLS algorithm. We note that the signal model in [8] was constructed under assumption of frequency-flat channels. To obtain a more practical and realistic signal model, in this thesis we extend the system and channel model by including multipath effects in the beginning of our work. In completing this extension, inter-symbol interference (ISI) caused by the special coding scheme of ST-BC will be specifically analyzed. Finally, a full discussion of the multipath signal model will be provided, including necessity of truncating the received signals as well as modifications in the signal model when considering time-varying channels. Via computer simulations, advantages of the proposed scheme will be verified. Compared to the conventional blind Capon receiver, we will show that the performance of the proposed CM-GSC-RLS algorithm is better. This is especially true when mismatch problem is considered in the MIMO-CDMA systems of interest. The proposed scheme show more robustness against the mismatch effects than the conventional blind Capon receiver. Moreover, the benefit resulted by truncating the received signals is also demonstrated, especially for binary phase-shift-keying (BPSK) modulated source symbol. Finally, simulations considering time-varying channels are provided to reveal that our proposed scheme can adapt itself to the time-varying environments appropriately.
5

Novel Blind ST-BC MIMO-CDMA Receiver with Adaptive Constant Modulus-GSC-RLS Algorithm in Multipath Channel

Cheng, Ming-Kai 18 August 2009 (has links)
In this thesis, we present a new hybrid pre-coded direct-sequence code division multiple access (DS-CDMA) system framework that use the multiple-input multiple-output (MIMO) antennas along with Alamouti¡¦s space-time block code (ST-BC). In the transmitter, the idea of hybrid pre-coded is exploited. It not only used to counteract the inter-symbol interference (ISI) introduced by the channel fading duo to multipath propagation but also very useful for exacting the phase of channel by appropriate design, which is not adopted in the conventional blind receiver. Under this structure, we propose a new blind adaptive MIMO-CDMA receiver based on the linearly constrained constant modulus (LCCM) criterion. To reduce the complexity of receiver design, framework of the generalized sidelobe canceller (GSC) associated with the recursive least square (RLS) algorithm is adopted for implementing the LCCM MIMO-CDMA receiver, and use gradient method to track the desired user¡¦s amplitude, simultaneously. Via computer simulations, advantages of the proposed scheme will be verified. Compared to the conventional blind Capon receiver, we will show that the performance of the proposed scheme is more robust against inaccuracies in the acquisition of the desired user¡¦s timing.
6

Adaptive Linearly Constrained Constant Modulus Conjugate Gradient Algorithm with Applications to Multiuser DS-CDMA Detector for Multipath Fading Channel

Wang, Sheng-Meng 04 July 2003 (has links)
The direct-sequence code division multiple access (DS-CDMA) is one of the significant techniques for wireless communication systems with multiple simultaneous transmissions. The main concern of this thesis is to propose a new linearly constrained constant modulus modified conjugate gradient (LCCM-MCG) adaptive filtering algorithm to deal with problem of channel mismatch associated with the multiple access interference (MAI) in DS-CDMA system over multipath fading channel. In fact, the adaptive filtering algorithm based on the CM criterion is known to be very attractive for the case when the channel parameters are not estimated perfectly. The proposed LCCM-MCG algorithm is derived based on the so-called generalized sidelobe canceller (GSC). It has the advantage of having better stability and less computational complexity compared with conventional recursive least-squares (RLS) algorithm, and can be used to achieve desired performance for multiuser RAKE receiver. Moreover, with the MCG algorithm it requires only one recursive iteration per incoming sample data for updating the weight vector, but still maintains performance comparable to the RLS algorithm. From computer simulation results, we show that the proposed LCCM-MCG algorithm has fast convergence rate and could be used to circumvent the effect due to channel mismatch. Also, the performance, in terms of bit error rate (BER), is quite close to the LCCM-RLS algorithm suggested in [18], and is superior to the stochastic gradient descent (SGD) algorithm proposed in [7].

Page generated in 0.0229 seconds