• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Multilevel Inverter Topologies With Reduced Power Circuit Complexity For Medium Voltage High Power Induction Motor Drives By Cascading Conventional Two-Level And Three-Level Inveters

Figarado, Sheron 05 1900 (has links)
Multilevel inverters have advantages over two-level inverters such as reduced THD, ability to operate at low switching frequencies, reduced switching losses etc. Moreover, higher voltage levels can be handled with devices of lower voltage rating. The main disadvantage with the multilevel configurations compared to the two-level inverter configuration is the increase in the number of power devices required and the circuit complexity, which necessitates complex control schemes that add to the cost. Also, the reliability of the converters comes down as the number of devices increases. Reduction in complexity and modularity are desirable characteristics for the multilevel inverters. Open-end winding Induction Motor (IM) drive configurations are shown to have advantages over the motor drive schemes with isolated neutral. The DC-link requirement in case of open-end winding structures comes down to half the voltage rating of the conventional NPC inverters. The DC- link requirement in case of open-end winding structures comes down to half compared to that of the conventional NPC inverters. The number of switching states is higher in the case of open-end winding configuration compared to multiplicity of switching states of conventional NPC inverters, which gives a control flexibility that can be used for optimizing the hardware requirements. Taking advantage of the flexibility given by open-end winding configuration, this thesis proposes schemes which have reduced power circuit complexity. Non-sinusoidal voltage fed IM drives suffer from the problems related to the common mode voltage (CMV) generated by the inverters. This CMV causes bearing currents and shaft voltages which in turn cause increased conducted EMI, ground loop currents and premature bearing failure. A three-level scheme was proposed for an open-end winding Induction machine in the literature, which completely eliminate the CMV variation from the pole voltages as well as the phase voltages. This configuration uses 24 controlled switches and two isolated DC-sources. In this thesis, three-level inverter schemes with CMV elimination and reduced power device count for an open-end winding IM drive are proposed. The first scheme gets the reduction in switch count by sharing the top inverter of the three-level scheme and the second scheme achieves the same by sharing the bottom inverter. This way, the number of controlled switches comes down to 18 from 24. Another problem with multilevel inverters is the large number of isolated DC-sources required to achieve the multilevel inversion. Reducing the number of isolated supplies and using capacitors to split the voltage levels poses the problem of capacitor voltage balancing. A four-level inverter with both CMV elimination and capacitor voltage balancing for an open-end winding IM drive is proposed in this thesis. The motor is fed by two four-level inverters from both the sides. A closed loop capacitor voltage balancing scheme is implemented and the redundancies in the switching states are used for achieving the capacitor voltage balancing and thereby reducing the total number of DC-link to two. The control scheme is independent of the load power factor and maintains the balance in the entire modulation range. A five-level inverter scheme is proposed for an open-end winding IM drive in this thesis. It requires only two isolated DC-sources to achieve the five-level inversion. The motor is fed by one NPC three-level inverter from one side and a two-level inverter from the other. The inverters on either side share the DC-sources. Common mode voltage in the phases are made zero in an average sense using sine-triangle modulation in the proposed scheme so that the common mode currents through the phases are suppressed. The maximum fundamental voltage that can be obtained at the phase is limited to 0.5Vdc. DC-link requirement of the inverter scheme is half of that of conventional five-level inverter scheme because of the open-end winding structure. The two-level inverter, which should withstand half the DC-link voltage, is always in square wave operation and hence the switching losses are very less. All the schemes are simulated extensively in MATLAB/Simulink and experimentally verified on laboratory prototypes under V/f control. TI Motor control DSP and Xilinx CPLD/FPGA are used for generation of the PWM signals for the schemes. The inverters are switched at around 1.25 kHz to keep the switching losses low. Due to laboratory constraints, the experimental verification is done on low power prototypes. Nonetheless, the generality of the schemes allow them to be used for medium voltage high power applications.

Page generated in 0.0893 seconds