• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • Tagged with
  • 9
  • 9
  • 9
  • 9
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Multilevel Inverter Topologies With Reduced Power Circuit Complexity For Medium Voltage High Power Induction Motor Drives By Cascading Conventional Two-Level And Three-Level Inveters

Figarado, Sheron 05 1900 (has links)
Multilevel inverters have advantages over two-level inverters such as reduced THD, ability to operate at low switching frequencies, reduced switching losses etc. Moreover, higher voltage levels can be handled with devices of lower voltage rating. The main disadvantage with the multilevel configurations compared to the two-level inverter configuration is the increase in the number of power devices required and the circuit complexity, which necessitates complex control schemes that add to the cost. Also, the reliability of the converters comes down as the number of devices increases. Reduction in complexity and modularity are desirable characteristics for the multilevel inverters. Open-end winding Induction Motor (IM) drive configurations are shown to have advantages over the motor drive schemes with isolated neutral. The DC-link requirement in case of open-end winding structures comes down to half the voltage rating of the conventional NPC inverters. The DC- link requirement in case of open-end winding structures comes down to half compared to that of the conventional NPC inverters. The number of switching states is higher in the case of open-end winding configuration compared to multiplicity of switching states of conventional NPC inverters, which gives a control flexibility that can be used for optimizing the hardware requirements. Taking advantage of the flexibility given by open-end winding configuration, this thesis proposes schemes which have reduced power circuit complexity. Non-sinusoidal voltage fed IM drives suffer from the problems related to the common mode voltage (CMV) generated by the inverters. This CMV causes bearing currents and shaft voltages which in turn cause increased conducted EMI, ground loop currents and premature bearing failure. A three-level scheme was proposed for an open-end winding Induction machine in the literature, which completely eliminate the CMV variation from the pole voltages as well as the phase voltages. This configuration uses 24 controlled switches and two isolated DC-sources. In this thesis, three-level inverter schemes with CMV elimination and reduced power device count for an open-end winding IM drive are proposed. The first scheme gets the reduction in switch count by sharing the top inverter of the three-level scheme and the second scheme achieves the same by sharing the bottom inverter. This way, the number of controlled switches comes down to 18 from 24. Another problem with multilevel inverters is the large number of isolated DC-sources required to achieve the multilevel inversion. Reducing the number of isolated supplies and using capacitors to split the voltage levels poses the problem of capacitor voltage balancing. A four-level inverter with both CMV elimination and capacitor voltage balancing for an open-end winding IM drive is proposed in this thesis. The motor is fed by two four-level inverters from both the sides. A closed loop capacitor voltage balancing scheme is implemented and the redundancies in the switching states are used for achieving the capacitor voltage balancing and thereby reducing the total number of DC-link to two. The control scheme is independent of the load power factor and maintains the balance in the entire modulation range. A five-level inverter scheme is proposed for an open-end winding IM drive in this thesis. It requires only two isolated DC-sources to achieve the five-level inversion. The motor is fed by one NPC three-level inverter from one side and a two-level inverter from the other. The inverters on either side share the DC-sources. Common mode voltage in the phases are made zero in an average sense using sine-triangle modulation in the proposed scheme so that the common mode currents through the phases are suppressed. The maximum fundamental voltage that can be obtained at the phase is limited to 0.5Vdc. DC-link requirement of the inverter scheme is half of that of conventional five-level inverter scheme because of the open-end winding structure. The two-level inverter, which should withstand half the DC-link voltage, is always in square wave operation and hence the switching losses are very less. All the schemes are simulated extensively in MATLAB/Simulink and experimentally verified on laboratory prototypes under V/f control. TI Motor control DSP and Xilinx CPLD/FPGA are used for generation of the PWM signals for the schemes. The inverters are switched at around 1.25 kHz to keep the switching losses low. Due to laboratory constraints, the experimental verification is done on low power prototypes. Nonetheless, the generality of the schemes allow them to be used for medium voltage high power applications.
2

Investigations On Sensorless Vector Control Using Current Error Space Phasor And Direct Torque Control Of Induction Motor Drive Based On Hexagonal And 12-Sided Polygonal Voltage Space Vectors

Ramubhai, Patel Chintanbhai 02 1900 (has links) (PDF)
Variable-speed Induction motor drives are nowadays used for various kinds of industrial processes, transportation systems, wind turbines and household appliances in the world. The majority of drives are for general purpose speed control applications where accurate speed control is not required for entire speed range. But for high dynamic drive application, very precise and fast control of induction motor drive is essential. For such applications, sophisticated and well-performing control design is a key issue. Precise and accurate torque control of the Induction Motor (IM) can only be accomplished by vector control and direct torque control. In terms of space vector theory, vector control implies that the instantaneous torque is controlled by way of the stator current vector that is orthogonal to the rotor flux vector. Precise knowledge of the rotor flux angle is therefore essential for a vector controlled IM. IMs do not allow the flux position to be easily measured, so most modern vector controlled IM drives rely on flux estimation. This means that the flux angle is derived from a flux estimator, using the dynamic model of the IM. Given that the rotor speed of the IM is measured by a mechanical shaft sensor. Flux estimation is a fairly easy task. However, vector control of IM without mechanical shaft speed sensor is of current interest in industrial environment. The driving motivations behind the development in sensorless control are lower cost, improved reliability and operating environment. In this thesis, a sensorless vector control scheme for rotor flux estimation using current error space phasor based hysteresis controller is proposed including the method for estimation of leakage inductance, Ls. For frequencies of operation less than 25 Hz, the rotor voltage and hence the rotor flux position is computed during the inverter zero voltage space vector using steady state model of IM. For above 25 Hz, active vector period and steady state model of IM is used. The whole rotor flux estimation scheme is dependent on current error space phasor and the steady state motor model, with rotor flux as a reference vector. Since no terminal voltage sensing is involved, dead time effects will not create problem in rotor flux sensing at low frequencies of operation. But appropriate device on-state drop are compensated at low frequencies (below 5 Hz) of operation to achieve a steady state operation up to less than 1 Hz. A constant switching frequency hysteresis current controller is used in inner current control loop for the PWM regulation, with smooth transition of operation to six-step mode operation. A simple Ls estimation based on current error space phasor is also proposed to nullify the deteriorating effect on rotor flux estimation. The parameter sensitivity of the control scheme to changes in the stator resistance Rs is also investigated. The drive scheme is tested up to a low frequency operation less than 1 Hz. The extensive simulation and experiment results are presented to show the proposed scheme’s good dynamic performance extending up to six-step operation. In contrast to vector control, direct torque control (DTC) method requires the knowledge of stator resistance only and thereby decreasing the associated sensitivity to parameters variation and the elimination of speed information. DTC as compared to vector control does not require co-ordinate transformation and PI controller. DTC is easy to implement because it needs only two hysteresis comparators and a lookup table for both flux and torque control. This thesis also investigates the possibilities in improvement of direct torque control scheme for high performance induction motor drive applications. Here, two schemes are proposed based on the direct torque control scheme for IM drive using 12-sided polygonal voltage space vectors for fast torque control. The torque control scheme based on DTC algorithm is proposed using 12-sided polygonal voltage space vector. The basic DTC scheme is used to control the torque. But the IM drive is open-end type. For torque control, the voltage space vectors orthogonal to stator flux vector in 12-sided polygonal space vector structure are used as hexagonal space vector based DTC scheme. The advantages achieved due to 12-sided polygonal space vector are mainly fast torque control and small torque ripple. The fast transient of torque with precise control is achieved using voltage space vector placed with a resolution of ±15. The torque ripple will be less as 6n±1 (n=odd) harmonic torque is totally eliminated from the whole range of PWM modulation. The comparative analysis of proposed 12-sided polygonal voltage space vector based DTC and conventional hexagonal space vector based DTC is also presented. Extensive simulation and experiment results are also presented to show the fast torque control at speeds of operation ranging from 5 Hz to the rated speed. The concept of 12-sided polygonal space vector based DTC is further extended for a variable speed control scheme using estimated fundamental stator voltage for sector identification. The conventional DTC scheme uses stator flux vector for identification of the sector and the switching vector are selected based on this sector information to control stator flux and torque. However, the proposed DTC scheme selects switching vectors based on the sector information of the estimated fundamental stator voltage vector and its relative position with respect to the stator flux vector. The fundamental stator voltage estimation is based on the steady state model of IM and information of synchronous frequency which is derived from computed stator flux using a low pass filter technique. The proposed DTC scheme utilizes the exact position of fundamental stator voltage vector and stator flux vector position to select optimal switching vector for fast control of torque with small variation of stator flux within hysteresis band. The present DTC scheme allows the full load torque control with fast transient response to very low speeds of operation below 5 Hz. The extensive simulation and experiment results are presented to show the fast torque control for speed of operation from zero speed to rated speed. However, the present scheme will have all the advantages of DTC scheme using stator flux vector for sector identification. All the above propositions are first simulated by MATLAB/Simulink and subsequently verified by an experimental laboratory prototype. The proposed control schemes are experimentally verified on a 3.7 kW IM drive. The control algorithms of the sensorless vector control using current error space phasor as well as DTC using 12-sided polygonal voltage space vector are completely implemented on a TI TMS320LF2812 DSP controller platform. These are some of the constituents for chapters 2, 3 and 4 in this thesis. Additionally, the first chapter also covers a brief survey on some of the recent progresses made in the field of sensorless vector control, direct torque control and current hysteresis controller. The thesis concludes with suggestion for further exploration.
3

Switched Capacitive Filtering Scheme for Harmonic Suppression in Variable Speed AC Drives

Pramanick, Sumit Kumar January 2016 (has links) (PDF)
For low and medium power applications, conventional two-level inverters are widely used in industrial applications including electric vehicle drives, traction drives, distributed generation, power management and grid connected renewable energy systems. To filter out the harmonic currents from the load, passive line filters are used. These filters are designed to pass the fundamental phase current and suppress higher harmonic currents, making the filters bulky. To get a nearly sinusoidal current waveform, these two level inverters are switched at high frequency to shift the harmonic components in the phase current to high frequencies to reduce size and cost of the filter. But higher switching frequencies have some drawbacks like large dV /dt stresses on the motor terminals and switching devices, leading to electro-magnetic interference (EMI) problems and higher switching losses. For full DC bus utilization to enhance the power output from the two level inverter, the inverter has to operate in overmodulation region up to the six-step operation. Considerable fifth and seventh order (6n ± 1, n = odd) harmonics are produced when the inverter operates in overmodulation region. These include some low order harmonics like fifth and seventh, which are currently suppressed by using bulky passive line filters. Different high frequency modulation schemes are uniquely used in overmodulation region to suppress these harmonics. Another well accepted method of harmonic suppression is the selective harmonic elimination (SHE) techniques. SHE introduces notches at specific angles in a fundamental period of the inverter pole voltage to eliminate a particular harmonic component from the pole voltage. But, SHE involves extensive offline computation and requirement for higher memory for implementation of huge lookup tables. dodecagonal voltage space vectors have been reported in literature. Dodecagonal voltage space vector structures inherently eliminate fifth and seventh order (6n ± 1, n = odd) harmonics from the phase voltage. However, these require multiple isolated and unequal DC supplies (like VDC and 0.366VDC ). Generating DC voltage supplies at particular ratio to the main DC supply, requires additional circuitry. This increases the size of the converter and four quadrant back to back operation is not possible for the converter. To overcome the problems mentioned above, a novel switched capacitive filtering technique is proposed in this work for low and medium power drives applications. The filtering is done by an inverter fed by capacitor. A novel method to ensure zero power contribution by an inverter is shown, enabling the inverter to be fed by a capacitor. Thus, the capacitor fed inverter is shown to operate as a switched capacitive filter, which generates harmonic voltages that gets eliminated from the phase voltage of conventional two level inverters. With the proposed switched capacitive filtering technique, the following benefits are achieved. • Fifth and seventh order (6n ± 1, n = odd) harmonics are eliminated from the phase voltage, for the full modulation range of the two level inverters even while operating in overmodulation region and six-step mode. Thus, bulky passive line filters are avoided. • Since, the capacitive filter does not contribute any active power to the load, single DC supply operation is possible. Hence, four quadrant back to back operations is possible with the proposed filtering technique. • Dodecagonal voltage space vector structures are realized using single DC supply for the first time. • Modulation techniques for different power circuit topologies have been proposed which inherently controls the capacitor voltage at specific voltage levels for the full modulation range of the inverter including six-step operation. Hence, no additional pre-charging circuitry is required. • High frequency switching is shifted to the capacitive filter which is at a low voltage compared to the DC supply fed power contributing inverter. Thus, the main inverter need not be switched at high switching frequency for harmonic suppression. This reduces the switching loss as compared to conventional inverters, to achieve harmonic suppression of comparable order. • Reduced voltage stress on the switches of the switched capacitive filter. Hence, low voltage devices can be used to implement the switched capacitive filter, reducing the cost and size drastically as compared to conventional passive line filters. The proposed switched capacitive filtering scheme has been realized for open-end winding induction motor drive and three phase star connected three terminal induction motor drive where conventional two level inverter is used as the power contributing inverter. Additionally, extension of the capacitive filtering scheme to multilevel inverter fed drives is also shown, where the main power contributing inverter is a three level flying capacitor (FC) inverter. The power circuit implementations are briefly described as following. (i) In open-end winding three phase induction motors, the two terminals of each of the three phase windings are accessed. The main DC bus connected two level inverter feeds power from one end of the motor terminals. A capacitor fed two level inverter eliminates the fifth and seventh order harmonics from the other end for the full modulation range including overmodulation and six-step operation of DC bus fed inverter. The voltage space vectors from both the inverters connected at opposite ends of the motor forms dodecagonal voltage space vectors. An uniform pulse width modulation (PWM), for the full modulation range is proposed which switches from the dodecagonal voltage space vectors while inherently maintaining the capacitor voltage at 0.289VDC . (ii) In conventional star connection of three phase induction motors, all three terminals of the three phase windings are shorted from one end, leaving access to just three terminals. Such three terminal induction motor fed to conventional two level inverter is commonly used in many drives applications. Capacitor fed H-bridges are cascaded to such two-level inverters, to eliminate the fifth and seventh order harmonics from the phase voltage for the full modulation range including overmodulation and six-step operation of DC fed inverter. The voltage space vectors from capacitor fed H-bridges get added to the voltage space vectors from the two level inverter to form dodecagonal voltage space vectors. A PWM technique for the full modulation range is proposed to switch from the dodecagonal voltage space vector while inherently maintaining the three H-bridge connected capacitor voltages at 0.1445VDC . (iii) Advantages of dodecagonal space vector switching and multilevel inverters are achieved with a single DC supply. A DC supply fed three level flying capacitor (FC) inverter feeds active power to one end of the induction motor winding terminals and H-bridge connected capacitors eliminate fifth and seventh order harmonics from the other end of the motor winding terminals. The voltage space vectors from the three level FC inverter and the H-bridge inverter forms a three level dodecagonal voltage space vectors with symmetric triangular sectors. A PWM technique is developed to switch the three level dodecagonal space vectors and simultaneously control the H-bridge connected capacitors at 0.1445VDC . The fifth and seventh order harmonics are eliminated for the full modulation range of the three level FC inverter, including the extreme six-step operation. Additionally, the proposed inverter has also been shown to operate for rotor field oriented vector control of the open-end winding induction motor drive. For all the power circuit implementation of the switched capacitive filter, an increase of 7.8% in the linear modulation range (up to 48.8Hz) is achieved, implying better DC bus utilization as compared to conventional inverter topologies switching from hexagonal voltage space vectors. With advantages like fifth and seventh order (6n ± 1, n = odd) harmonic elimination throughout the modulation range, reduced dv/dt stress, lower switching frequency in high voltage devices, single DC supply requirement, dodecagonal voltage space vector switching, PWM technique with inherent capacitor balancing, increased linear modulation range and reduced voltage stress on high frequency switches, the proposed switched capacitive filtering scheme is well suited for low and medium power drives application with requirements for high dynamic performance and precise speed control.
4

Investigations on Hybrid Multilevel Inverters with a Single DC Supply for Zero and Reduced Common Mode Voltage Operation and Extended Linear Modulation Range Operation for Induction Motor Drives

Arun Rahul, S January 2016 (has links) (PDF)
Multilevel inverters play a major role in the modern day medium and high power energy conversion processes. The classic two level voltage source inverter generates PWM pole voltage output having two levels with strong fundamental component and harmonics centered around the switching frequency and its multiples. With higher switching frequency, its components can be easily filtered and results in better Total harmonic distortion (THD) output voltage and current. But with higher switching frequency, switching loss of power devices increases and electromagnetic interferences also increases. Also in two level inverter, pole voltage switches between zero and DC bus volt-age Vdc. This switching results in high dv=dt and causes EMI and increased stress on the motor winding insulation. The attractive features of multilevel inverters compared to a two level inverter are reduced switching frequency, reduced switching loss, improved volt-age and current THD, reduced dv=dt, etc. Because of these reasons, multilevel invertersultilevelinvertersplayamajorroleinthemoderndaymediumandhighpower find application in electric motor drives, transmission and distribution of power, transportation, traction, distributed generation, renewable energy systems like photo voltaic, hydel power, energy management, power quality, electric vehicle applications, etc. AC motor driven applications are consuming the significant part of the generated electrical energy (more than 60%) around the world. The multilevel inverters are ideal for such applications, since the switching frequency of the devices can be kept low with lower out-put voltage dv=dt. Also by using multilevel inverters, the common mode voltage (CMV) switching can be made zero and associated motor bearing failure can be mitigated. For multilevel inverter topologies, as the number of level increases, the power circuit becomes more complex by the increase in the number of DC power supplies, capacitors, switching devices and associated control circuitry. The main focus of development in multilevel inverter for medium and high power applications is to obtain an optimized number of voltage levels with reduced number of switching devices, capacitors and DC power sources. In this thesis, a new hybrid seven level inverter topology with a single DC supply is proposed with reduced switch count. The inverter is realized by cascading two three level flying capacitor inverters with a half bridge module. Compared to the conventional seven level inverter topologies, the proposed inverter topology uses lesser number of semiconductor devices, capacitors and DC power supplies for its operation. For this topology, capacitor voltage balancing is possible for entire modulation range irrespective of the load power factor. Also capacitor voltage can be controlled over a switching cycle and this result in lowering the capacitor sizing for the proposed topology. A simple hysteresis band based capacitor voltage balancing scheme is implemented for the inverter topology. For a voltage source inverter fed induction motor drive system, the inverter pole voltage is the sum of motor phase voltage and common mode voltage. In induction motors, there exists a parasitic capacitance between stator winding and stator iron, and between stator winding and rotor iron. Common mode voltage with significant magnitude and high frequency switching causes leakage current through these parasitic capacitances and motor bearings. This leakage current can cause ash over of bearing lubricant and corrosion of ball bearings, resulting in an early mechanical failure of the drive system. In this thesis, analysis of extending the linear modulation range of a general n-level inverter by allowing reduced magnitude of common mode voltage (CMV) switching (only Vdc/18) is presented. A new hybrid seven level inverter topology, with a single DC supply and with reduced common mode voltage (CMV) switching is presented in this thesis for the first time. Inverter is operated with zero CMV for modulation index less than 86% and is operated with a CMV magnitude of Vdc/18 to extend the linear modulation range up to 96%. Experimental results are presented for zero CMV operation and for reduced common voltage operation to extend the linear modulation range. A capacitor voltage balancing algorithm is designed utilizing the pole voltage redundancies of the inverter, which works for every sampling instant to correct the capacitor voltage irrespective of load power factor and modulation index. The capacitor voltage balancing algorithm is tested for different modulation indices and for various transient conditions, to validate the proposed topology. In recent years, model predictive control (MPC) using the system model has proved to be a good choice for the control of power converter and motor drive applications. MPC predicts system behavior using a system model and current system state. For cascaded multilevel inverter topologies with a single DC supply, closed loop capacitor voltage control is necessary for proper operation. This thesis presents zero and reduced common mode voltage (CMV) operation of a hybrid cascaded multilevel inverter with predictive capacitor voltage control. For the presented inverter topology, there are redundant switching states for each inverter voltage levels. By using these switching state redundancies, for every sampling instant, a cost function is evaluated based on the predicted capacitor voltages for each phase. The switching state which minimizes cost function is treated as the best and is switched for that sampling instant. The inverter operates with zero CMV for a modulation index upto 86%. For modulation indices from 86% to 96% the inverter can operate with reduced CMV magnitude ( Vdc/18) and reduced CMV switching frequency using the new space-vector PWM (SVPWM) presented herein. As a result, the linear modulation range is increased to 96% as compared to 86% for zero CMV operation. Simulation and experimental results are presented for the inverter topology for various steady state and transient operating conditions by running an induction motor drive with open loop V/f control scheme. The operation of a two level inverter in the over-modulation region (maximum peak phase fundamental output of inverter is greater than 0:577Vdc) results in lower order harmonics in the inverter output voltage. This lower order harmonics (mainly 5th, 7th, 11th, and 13th) causes electromagnetic torque ripple in motor drive applications. Also these harmonics causes extra losses and adversely affects the efficiency of the drive system. Also inverter control becomes non linear and special control algorithms are required for inverter operation in the over modulation region. In conventional schemes, maximum fundamental output voltage possible is 0:637Vdc. In that case inverter is operated in a square wave mode, also called six-step mode. This operation results in high dv=dt for the inverter output voltage. With multilevel inverters also, the inverter operation with peak phase fundamental output voltage above 0:577Vdc results in lower order harmonics in the inverter output voltage and results in electromagnetic torque pulsation. In this thesis, a new space vector PWM (SVPWM) method to extend the linear modulation range of a cascaded five level inverter topology with a single DC supply is presented. Using this method, the inverter can be controlled linearly and the peak phase fundamental output voltage of the inverter can be increased from 0:577Vdc to 0:637Vdc without increasing the DC bus voltage and without exceeding the induction motor voltage rating. This new technique makes use of cascaded inverter pole voltage redundancy and property of the space vector structure for its operation. Using this, the induction motor drive can be operated till the full speed range (0 Hz to 50 Hz) with the elimination of lower order harmonics in the phase voltage and phase current. The ve level topology presented in this thesis is realized by cascading a two level inverter and two full bridge modules with floating capacitors. The inverter topology and its operation for extending the modulation range is analyzed extensively. Simulation and experimental results for both steady state and dynamic operating conditions are presented. Zero common mode voltage (CMV) operation of multilevel inverters results in reduced DC bus utilization and reduced linear modulation range. In this thesis two reduced CMV SVPWM schemes are presented to extend the linear modulation range by allowing reduced CMV switching. But using these SVPWM schemes the peak phase fundamental output voltage possible is only 0:55Vdc in the linear region. In this thesis, a method to extend the linear modulation range of a CMV eliminated hybrid cascaded multilevel inverter with a single DC supply is presented. Using this method peak fundamental voltage can be increased from 0 to 0:637Vdc with zero CMV switching inside the linear modulation range. Also inverter can be controlled linearly for the entire modulation range. Also, various PWM switching sequences are analyzed in this thesis and the PWM sequence which gives minimum current ripple is used for the zero CMV operation of the inverter. The inverter topology with single DC supply is realized by cascading a two level inverter with two floating capacitor fed full bridge modules. Simulation and experimental results for steady state and dynamic operating conditions are presented to validate the proposed method. A three phase, 400 V, 3.7 kW, 50 Hz, two-pole induction motor drive with the open-loop V/f control scheme is implemented in the hardware for testing proposed inverter topology and proposed SVPWM algorithms experimentally. The semiconductor switches that were used to realize the power circuit for the experiment were 75 A, 1200 V IGBT half-bridge modules (SKM-75GB-12T4). Optoisolated gate drivers with de-saturation protection (M57962L) were used to drive the IGBTs. For the speed control and PWM timing computation, TMS320F28335 DSP is used as the main controller and Xilinx SPARTAN-3 XC3S200 FPGA as the PWM signal generator with dead time of 2.5 s. Level shifted carrier-based PWM algorithm is implemented for the normal inverter operation and zero CMV operation. From the PWM algorithm, information about the pole voltage levels to be switched can be obtained for each phase. In the sampling period, for capacitor voltage balancing of each phase, the DSP selects a switching state using the capacitor voltage information, current direction and pole voltage data for each phase. This switching state information along with the PWM timing data is sent to an FPGA module. The FPGA module generates the gating signals with a dead time of 2.5 s for the gate driver module for all the three phases by processing the switching state information and PWM signals for the given sampling period. For fundamental frequencies above 10Hz, synchronous PWM technique was used for testing the inverter topology. For modulation frequencies 10Hz and below, a constant switching frequency of 900 Hz was used. Various steady state and transient operation results are provided to validate the proposed inverter topology and the zero and reduced CMV operation schemes and extending the linear modulation scheme presented in this thesis. With the advantages like reduced switch count, single DC supply requirement, zero and reduced CMV operation, extension of linear modulation range, linear control of induction motor over the entire modulation range with zero CMV, lesser dv=dt stresses on devices and motor phase windings, lower switching frequency, inherent capacitor balancing, the proposed inverter power circuit topologies, and the SVPWM methods can be considered as good choice for medium voltage, high power motor drive applications.
5

Studies on Current Hysteresis Controllers and Low Order Harmonic Suppression Techniques for IM Drives with Dodecagoal Voltage Space Vectors

Azeez, Najath Abdul January 2013 (has links) (PDF)
Multilevel inverters are very popular for medium and high-voltage induction motor (IM) drive applications. They have superior performance compared to 2-level inverters such as reduced harmonic content in output voltage and current, lower common mode voltage and dv/dt, and lesser voltage stress on power switches. To get nearly sinusoidal current waveforms, the switching frequency of the conventional inverters have to be in¬creased. This will lead to higher switching losses and electromagnetic interference. The problem in using lower switching frequency is the introduction of low order harmonics in phase currents and undesirable torque ripple in the motor. The 5th and 7th harmonics are dominant for hexagonal voltage space-vector based low frequency switching. Dodecagonal voltage space-vector based multilevel inverters have been proposed as an improvement over the conventional hexagonal space vector based inverters. They achieve complete elimination of 5th and 7th order harmonics throughout the modulation range. The linear modulation range is also extended by about 6.6%, since the dodecagon is closer to circle than a hexagon. The previous works on dodecagonal voltage space vector based VSI fed drives used voltage controlled PWM (VC-PWM). Although these controllers are more popular, they have inferior dynamic performance when compared to current controlled PWM (CC¬PWM). VSIs using current controlled PWM have excellent dynamic response, inherent short-circuit protection and are simple to implement. The conventional CC-PWM tech¬niques have large switching frequency variation and large current ripple in steady-state. xix As a result, there has been significant research interest to achieve current controlled VSI fed IM drives with constant switching frequency. Two current error space vector (CESV) based hysteresis controllers for dodecagonal voltage space-vector based VSI fed induction motor drives are proposed in this work. The proposed controllers achieve nearly constant switching frequency at steady state operation, similar to VC-SVPWM based VSI fed IM drives. They also have fast dynamic response while at the same time achieving complete elimination of fifth and seventh order harmonics for the entire modulation range, due to dodecagonal voltage vector switching. The first work proposes a nearly constant switching frequency current error space vector (CESV) based hysteresis controller for an IM drive with single dodecagonal voltage space vectors. Parabolic boundaries computed offline are used in the proposed controller. An open-end winding induction motor is fed from two inverters with asymmetrical DC link voltages, to generate the dodecagonal voltage space vectors. The drive scheme is first studied at different frequencies with a space vector based PWM (SVPWM) control, to obtain the current error space vector boundaries. The CESV boundary at each frequency can be approximated with four parabolas. These parabolic boundaries are used in the proposed controller to limit the CESV trajectory. Due to symmetries in the parabolas only two set of parabola parameters, at different frequencies, need to be stored. A generalized next vector selection logic, valid for all sectors and rotation direction, is used in the proposed controller. For this an axis transformation is done in all sectors, to bring the CESV trajectory to the first sector. The sector information is obtained from the estimated fundamental stator phase voltage. The proposed controller is extensively studied using vector control at different frequencies and transient conditions. This controller maintains nearly constant switching frequency at steady state operation, similar to VC-SVPWM inverters, while at the same time achieving better dynamic performance and complete elimination of 5th and 7th order harmonics throughout the modulation range. In the second work the nearly constant switching frequency current hysteresis con¬troller is extended to multilevel dodecagonal voltage space-vector based IM drives, with online computation of CESV boundaries. The multilevel dodecagonal space-vector dia¬gram has different types of triangles, and the previously proposed methods for multilevel hexagonal VSI based current hysteresis controllers cannot be used directly. The CESV trajectory of the VC-SVPWM, obtained for present triangular region, is used as the reference trajectory of the proposed controller. The CESV reference boundaries are com¬puted online, using switching dwell time and voltage error vector of each applied vector. These quantities are calculated from estimated sampled reference phase voltages, which are found out from the stator current error ripple and the parameters of the induction motor. Whenever the actual current error space vector crosses the reference CESV tra¬jectory, an appropriate vector that will force it along the reference trajectory is switched. Extensive study of the proposed controller using vector control is done at different fre¬quencies and transient conditions. This controller has all the advantages of multilevel switching like low dv/dt, lesser electromagnetic interference, lower switch voltage stress and lesser harmonic distortion, in addition to all the dynamic performance advantages of the previous controller. The third work proposes an elegant 5th and 7th order harmonic suppression tech¬nique for open end winding split-phase induction motors, using capacitor fed inverters. Split-phase induction motors have been proposed to reduce the torque and flux ripples of conventional three-phase IM. But these motors have high 5th and 7th order harmonics in the stator windings due to lack of back-emf for these frequencies. A space-vector harmonic analysis of the split-phase IM is conducted and possible 5th and 7th order harmonic sup¬pression techniques studied. A simple harmonic suppression scheme is proposed, which requires the use of only capacitor fed inverters. A PWM scheme that can maintain the capacitor voltage as well as suppress the 5th and 7th order harmonics is also proposed. To test the performance of the proposed scheme, an open-loop v/f control is used on an open-end winding split-phase induction motor under no-load condition. Synchronized PWM with two samples per sector was used, for frequencies above 10 Hz. The har¬monic spectra of the phase voltages and currents were computed and compared with the traditional SVPWM scheme, to highlight the harmonic suppression. The concepts were initially simulated in Matlab/Simulink. Experimental verifica¬tion was done using laboratory prototypes at low power. While these concepts maybe easily extended to higher power levels by using suitably rated devices, the control tech¬niques presented shall still remain applicable. TMS320F2812 DSP platform was used to execute the control code for the proposed drive schemes. For the first work the output pins of the DSP was directly used to drive the inverter switches through a dead-band circuit. For the other two works, DSP outputs the sector information and the PWM signals. The PWM terminals and I/O lines of the DSP is used to output the timings and the triangle number respectively. An FPGA (XC3S200) was used to translate the sector information and the PWM signals to IGBT gate signal logic. A constant dead-time of 1.5 µs was also implemented inside the FPGA. Opto-isolated gate drivers with desaturation protection (M57962L) were used to drive the IGBTs. The phase currents and DC bus voltages were measured using hall-effect sensors. An incremental shaft position encoder was also connected to the motor to measure the angular velocity. The switches were realized using 1200 V, 75 A IGBT half bridge modules.
6

Reduced Switch Count Multi-Level Inverter Structures With Common Mode Voltage Elimination And DC-Link Capacitor Voltage Balancing For IM Drives

Mondal, Gopal 07 1900 (has links)
Multilevel inverter technology has emerged recently as a very important alternative in the area of high-power medium-voltage energy control. Voltage operation above semiconductor device limits, lower common mode voltages, near sinusoidal outputs together with small dv/dt’s, are some of the characteristics that have made this power converters popular for industry and modern research. However, the existing solutions suffer from some inherent drawbacks like common mode voltage problem, DC-link capacitor voltage fluctuation etc. Cascaded multi-level inverter with open-end winding induction motor structure promises significant improvements for high power medium-voltage applications. This dissertation investigates such cascaded multi-level inverters for open-end winding induction motor drive with reduced switch count. Similar to the conventional two-level inverters, other multi-level inverters with PWM control generate alternating common mode voltage (CMV). The alternating common mode voltage coupled through the parasitic capacitors in the machine and results in excessive bearing current and shaft voltage. The unwanted shaft voltage may cross the limit of insulation breakdown voltage and cause motor failure. This alternating common mode voltage adds to the total leakage current through ground conductor and acts as a source of conducted EMI which can interfere with other electronic equipments around. As the number of level increase in the inverter, different voltage levels are made available by using DC-link capacitor banks, instead of using different isolated power supplies. The intermediate-circuit capacitor voltages which are not directly supplied by the power sources are inherently unstable and require a suitable control method for converter operation, preferably without influence on the load power factor. Apart from normal operation, the sudden fault conditions may occur in the system and it is necessary to implement the control strategy considering this condition also. A five-level inverter topology with cascaded power circuit structure is proposed in this dissertation with the strategy to eliminate the common mode voltage and also to maintain the balance in the DC-link capacitor voltages. The proposed scheme is based on a dual five-level inverter for open-end winding induction motor. The principle achievement of this work is the reduction of power circuit complexity in the five-level inverter compared to a previously proposed five-level inverter structure for open-end winding IM drive with common mode voltage elimination. The reduction in the number of power switching devices is achieved by sharing the two two-level inverters for both the inverter structures. The resultant inverter structure can produce a nine-level voltage vector structure with the presence of alternating common mode voltage. The inverter structure is formed by cascading conventional two-level inverters together with NPC three-level inverters. Thus it offers modular and simpler power bus structure. As the power circuit is realised by cascading conventional two-level and NPC three-level inverters the number of power diodes requirements also reduced compared to the conventional NPC five-level inverters. The present proposed structure is implemented for the open-end winding induction motor and the power circuit offers more number of switching state redundancies compared to any conventional five-level inverter. The inverter structure required half the DC-link voltage compared to the DC-link voltage required for the conventional five-level inverter structure for induction motor drive and this reduces the voltage stress on the individual power devices. The common mode voltage is eliminated by selecting only the switching states which do not generate any common mode voltage in pole voltages hence there will be no common mode voltage at the motor phase also. The technique of using the switching state selection for the common mode voltage elimination, cancels out the requirement of the filter for the same purpose. As the inverter output is achieved without the presence of common mode voltage, the dual inverter can be fed from the common DC-link sources, without generating any zero sequence current. Hence the proposed dual five-level inverter structure requires only four isolated DC supplies. The multi-level inverters supplied by single power supply, have inherent unbalance in the DC-link capacitor voltages. This unbalance in the DC-link capacitor voltages causes lower order harmonics at the inverter output, resulting in torque pulsation and increased voltage stress on the power switching devices. A five-level inverter with reduced power circuit complexity is proposed to achieve the dual task of eliminating common mode voltage and DC-link capacitor voltage balancing. The method includes the analysis of current through the DC-link capacitors, depending on the switching state selections. The conditions to maintain all the four DC-link capacitor voltages are analysed. In an ideal condition when there is no fault in the power circuit the balance in the capacitor voltages can be maintained by selecting switching states in consecutive intervals, which have opposite effect on the capacitor voltages. This is called the open loop control of DC-link capacitor voltage balancing, since the capacitor voltages are not sensed during the selection of the switching states. The switching states with zero common mode voltages are selected for the purpose of keeping the capacitor voltages in balanced condition during no fault condition. The use of any extra hardware is avoided. The proposed open loop control of DC-link capacitor voltage balancing is capable of keeping the DC-link capacitor voltages equal in the entire modulation region irrespective of the load powerfactor. The problem with the proposed open loop control strategy is that, it can not take any corrective action if there is any initial unbalance in the capacitor voltages or if any unbalance occurs in the capacitor voltages during operation of the circuit,. To get the corrective action in the capacitor voltages due occurrence of any fault in the circuit, the strategy is further improved and a closed loop control strategy for the DC-link capacitor voltages is established. All the possible fault conditions in the four capacitors are identified and the available switching states are effectively used for the corrective action in each fault condition. The strategy is implemented such a way that the voltage balancing can be achieved without affecting the output fundamental voltage. The proposed five-level inverter structure presented in this thesis is based on a previous work, where a five-level inverter structure is proposed for the open-end winding induction motor. In that previous work 48 switches are used for the realization of the power circuit. It is observed that all the available switching states in this previous work are not used for any of the performance requirement of CMV elimination or DC-link voltage balancing. So, in this proposed work, the power circuit is optimized by reducing some of the switches, keeping the performance of the inverter same as the power circuit proposed in the previous work. The five-level inverter proposed in this thesis used 36 switches and the number of switching states is also reduced. But, the available switching states are sufficient for the CMV elimination and DC-link capacitor voltage balancing. The advantage of the modular circuit structure of this proposed five-level inverter is further investigated and the inverter structure is modified to a seven-level inverter structure for the open end winding induction motor. The proposed power circuit of the seven-level inverter uses only 48 switches, which is less compared to any seven-level inverter structure for the open end winding induction motor with common mode voltage elimination. The power circuit is reduced by sharing four two-level inverters to both the individual seven-level inverters in both the sides of the of the open end winding induction motor. The cascaded structure eliminates the necessity of the power diodes as required by the conventional NPC multilevel inverters. The proposed seven-level inverter is capable of producing a thirteen-level voltage vector hexagonal structure with the presence of common mode voltage. The common mode voltage elimination is achieved by selecting only the switching states with zero common mode voltage from both the inverters and the combined inverter structure produce a seven-level voltage vector structure with zero common mode voltage. The switching frequency is also reduced for the seven-level inverter compared to the proposed five-level inverter. The advantage of this kind of power circuit structure is that the number of power diode requirement is same in both five-level and seven-level inverters. Since there is no common mode voltage in the output voltages, the dual seven-level inverter structure can be implemented with the common DC-link voltage sources for both the sides. Six isolated power supplies are sufficient for both the seven-level inverters. The available switching states in this proposed seven-level inverter are further analysed to implement the open loop and closed loop capacitor voltage balancing and this allow the power circuit to run with only three isolated DC supplies. All the proposed work presented in this thesis are initially simulated in SIMULINK toolbox and then implemented in a form of laboratory prototype. A 2.5KW open end winding induction motor is used for the implementation of these proposed works. But all these work general in nature and can be implemented for high power drive applications with proper device ratings.
7

Multilevel Dodecagonal and Octadecagonal Voltage Space Vector Structures with a Single DC Supply Using Basic Inverter Cells

Boby, Mathews January 2017 (has links) (PDF)
Multilevel converters have become the direct accepted solution for high power converter applications. They are used in wide variety of power electronic applications like power transmission and distribution, electric motor drives, battery management and renewable energy management to name a few. For medium and high voltage motor drives, especially induction motor drives, the use of multilevel voltage source inverters have become indispensible. A high voltage multilevel inverter could be realized using low voltage switching devices which are easily available and are of low cost. A multilevel inverter generates voltage waveforms of very low harmonic distortion by switching between voltage levels of reasonably small amplitude differences. Thus the dv/dt of the output voltage waveform is small and hence the electromagnetic interference generated is less. Because of better quality output generation, the switching frequency of the multilevel inverters could be reduced to control the losses. Thus, a multilevel converter stands definitely a class apart in terms of performance from a conventional two-level inverter. Many multilevel inverter topologies for induction motor drives are available in the literature. The basic multilevel topologies are the neutral point clamped (NPC) inverter, flying capacitor (FC) inverter and the cascaded H-bridge (CHB) inverter. Various other hybrid multilevel topologies have been proposed by using the basic multilevel inverter topologies. It is also possible to obtain multilevel output by using conventional two-level inverters feeding an open-end winding induction motor from both sides. All the conventional multilevel voltage source inverters generate hexagonal (6 sided polygons) voltage space vector structures. When an inverter with hexagonal space vector structure is operated in the over modulation range, significant low order harmonics are generated in the phase voltage output. Over modulation operation is required for the full utilization of the available DC-link voltage and hence maximum power generation. Among the harmonics generated, the fifth and seventh harmonics are of significant magnitudes. These harmonics generate torque ripple in the motor output and are undesirable in high performance motor drive applications. The presence of these harmonics further creates problems in the closed loop current control of a motor, affecting the dynamic performance. Again, the harmonic currents generate losses in the stator windings. Therefore, in short, the presence of harmonic voltages in the inverter output is undesirable. Many methods have been proposed to eliminate or mitigate the effect of the harmonics. One solution is to operate the inverter at high switching frequency and thereby push the harmonics generated to high frequencies. The stator leakage inductance offers high impedance to the high frequency harmonics and thus the harmonic currents generated are negligible. But, high switching frequency brings switching losses and high electromagnetic interference generation in the drive system. And also, high switching frequency operation is effective only in the linear modulation range. Another solution is to use passive harmonic filters at the inverter output. For low order harmonics, the filter components would be bulky and costly. The loss created by the filters degrades the efficiency of the drive system as well. The presence of a filter also affects the dynamic performance of the drive system during closed loop operation. Special pulse width modulation (PWM) techniques like selective harmonic elimination (SHE) PWM can prevent the generation of a particular harmonic from the phase voltage output. The disadvantages of such schemes are limited modulation index, poor dynamic performance and extensive offline computations. An elegant harmonic elimination method is to generate a voltage space vector structure having more number of sides like a dodecagon (12 sided polygons) or an octadecagon (18 sided polygons) rather than a hexagon. Inverter topologies generating dodecagonal voltage space vector structure eliminate fifth and seventh order harmonics, represented as 6n 1; n = odd harmonics, from the phase voltages and hence from the motor phase currents, throughout the entire modulation range. The first harmonics appearing the phase voltage are the 11th and 13th harmonics. Another advantage is the increased linear modulation range of operation for a given DC-link voltage, because geometrically dodecagon is closer to circle than a hexagon. An octadecagonal structure eliminates the 11th and 13th harmonics as well from the phase voltage output. The harmonics present in the phase voltage are of the order 18n 1; n = 1; 2; 3; :::. Thus the total harmonics distortion (THD) of the phase voltage is further improved. The linear modulation range also gets enhanced compared to hexagonal and dodecagonal structures. Multilevel dodecagonal and octadecagonal space vector structures combines the advantages of both multilevel structure and dodecagonal and octadecagonal structure and hence are very attractive solutions for high performance induction motor drive schemes. Chapter 1 of this thesis introduces the multilevel in-verter topologies generating hexagonal, dodecagonal and octadecagonal voltage space vector structures. Inverter topologies generating multilevel dodecagonal and octadecago-nal voltage space vector structures have been proposed before but using multiple DC sources delivering active power. The presence of more than one DC source in the inverter topology makes the back to back operation (four-quadrant operation) of the drive system difficult. And also the drive system becomes more costly and bulky. This thesis proposes induction motor drive schemes generating multilevel dodecagonal and octadecagonal volt-age space vector structures using a single DC source. In Chapter 2, an induction motor drive scheme generating a six-concentric multilevel dodecagonal voltage space vector structure using a single DC source is proposed for an open-end winding induction motor. In the topology, two three-level inverters drive an open-end winding IM, one inverter from each side. DC-link of primary inverter is from a DC source (Vdc) which delivers the entire active power, whereas the secondary inverter DC-link is maintained by a capacitor at a voltage of 0:289Vdc, which is self-balanced during the inverter operation. The PWM scheme implemented ensures low switching frequency for primary inverter. Secondary inverter operates at a small DC-link voltage. Hence, switching losses are small for both primary and secondary inverters. An open-loop V/f scheme was used to test the topology and modulation scheme. In the work proposed in Chapter 3, the topology and modulation scheme used in the first work is modified for a star connected induction motor. Again, the scheme uses only a single DC source and generates a six-concentric multilevel space vector struc-ture. The power circuit topology is realized using a three-level flying capacitor (FC) inverter cascaded with an H-bridge (CHB). The capacitors in the CHB inverter are maintained at a voltage level of 0:1445Vdc. The FC inverter switches between volt-age levels of [Vdc; 0:5Vdc; 0] and the CHB inverter switches between voltage levels of [+01445Vdc; 0; 0:1445Vdc]. The PWM scheme generates a quasi-square waveform output from the FC inverter. This results in very few switchings of the FC inverter in a funda-mental cycle and hence the switching losses are controlled. The CHB inverter switches Ch. 0: at high frequency compared to the FC inverter and cancels the low order harmonics (6n 1; n = odd) generated by the FC inverter. Even though the CHB operates at higher switching frequency, the switchings are at low voltage thereby controlling the losses. The linear modulation range of operation is extended to 48:8Hz for a base frequency of 50Hz. An open-loop V/f scheme was used to test the topology and modulation scheme. In Chapter 4, a nine-concentric multilevel octadecagonal space vector structure is proposed for the first time, again using a single DC source. The circuit topology remains same as the work in Chapter 3, except that the CHB capacitor voltage is maintained at 0:1895Vdc. The 5th; 7th; 11th and 13th harmonics are eliminated from the phase voltage output. The linear modulation range is enhanced to 49:5Hz for a base speed of 50Hz. An open-loop V/f scheme and rotor field oriented control scheme were used to test the proposed drive system. All the proposed drive schemes have been extensively simulated and tested in hard-ware. Simulation was performed in MATLAB-SIMULINK environment. For implement-ing the inverter topology, SKM75GB12T4 IGBT modules were used. The control al-gorithms were implemented using a DSP (TI’s TMS320F28334) and an FPGA (Xilinx Spartan XC3S200). A 1kW , 415V , 4-pole induction motor was used for the experiment purpose. The above mentioned induction motor drive schemes generate phase voltage outputs in which the low order harmonics are absent. The linear modulation range is extended near to the base frequency of operation compared to hexagonal space vector structure. In the inverter topologies, the secondary inverters or the CHB inverters functions as harmonic filters and delivers zero active power. The primary inverter in the topologies switches at low frequency, reducing the power loss. Single DC source requirement brings down the cost of the system as well as permitting easy four-quadrant operation. This is also advantageous in battery operated systems like EV applications. With these features and advantages, the proposed drive schemes are suitable for high performance, medium voltage induction motor drive applications.
8

Investigations on Online Boundary Variation Techniques for Nearly Constant Switching Frequency Hysteresis Current PWM Controller for Multi-Level Inverter Fed IM Drives

Dey, Anubrata January 2012 (has links) (PDF)
In DC to AC power conversion, voltage source inverters (VSI) based current controllers are usually preferred for today’s high performance AC drive which requires excellent dynamic and steady state performances at different transient and load conditions, with the additional advantages like inherent short circuit and over current protection. Out of different types of current controllers, hysteresis controllers are widely used due to their simplicity and ability to meet the requirements for a high performance AC drives. But the conventional hysteresis controllers suffers from wide variation of PWM switching frequency, overshoot in current errors, sub-harmonic components in the current waveform and non-optimum switching at different operating point of the drive system. To mitigate these problems, particularly to control the switching frequency variation, which is the root cause of all other problems, several methodologies like ramp comparison based controller, predictive current controller, etc. were proposed in the literature. But amplitude and phase offset error in the ramp comparison based controllers and complexities involved in the predictive controllers have limited the use of these controllers. Moreover, these type of controllers, which uses three separate and independently controlled tolerance band (sinusoidal type or adaptive) to control the 3-phase currents, shows limited dynamic responses and they are not simple to implement. To tackle the problem of controlling 3-phase currents simultaneously, space vector based hysteresis current controller is very effective as it combines the current errors of all the three phases as a single entity called current error space vector. It has a single controller’s logic with a hysteresis boundary for controlling this current error space vector. Several papers on space vector based hysteresis controllers for 2-level inverter with constant switching frequency have been published, but the application of the constant switching frequency based hysteresis current controllers for multi¬level inverter fed drive system, has not been addressed properly. Use of multi-level inverter in modern high performance drive for medium and high voltage levels is more prominent because of multi-level’s inherent advantages like good power quality, good electromagnetic compatibility (EMC), better DC link voltage utilization, reduced device voltage rating, so on. Even though some of the earlier works describe three-level space vector based hysteresis current controller techniques, they are specific to the particular level of inverters and does not demonstrate constant switching frequency of operation. This thesis proposes a novel approach where nearly constant switching frequency based hysteresis controller can be implemented for any general n-level inverter and it is also independent of inverter topology. In this work, varying parabolic boundary is used as the hysteresis current error boundary for controlling the current in a multi-level space vector structure. The computation of the parabolic boundary is accomplished offline and all the necessary boundary parameters at different operating points are stored in the look-up tables. The varying parabolic boundary for the multi-level space vector structure depends on the sampled reference phase voltage values which are estimated from stator current error information and then using the equivalent circuit model of induction motors. Here, a mapping technique is adopted to bring down all the three phase references to the inner- most carrier region, which results in mapping any outer triangular structure where tip of the voltage space vector is located, to one of the sectors of the inner most hexagon of the multi-level space vector structure. In this way, the required mapped sector information is easily found out to fix the correct orientation of the parabolic boundary in the space vector plane. This mapping technique simplifies the controller’s logic similar to that of a 2-level inverter. For online identification of the inverter switching voltage vectors constructing the present outer triangle of the multi-level space vector structure, the proposed controller utilizes the sampled phase voltage references. This identification technique is novel and also generic for any n-level inverter structure. This controller is having all the advantages of a space vector based hysteresis current controller and that of a multi-level inverter apart from having a nearly constant switching frequency spectrum similar to that of a voltage controlled space vector PWM (VC-SVPWM). Using the proposed controller, simulation study of a five-level inverter fed induction motor (IM) drive scheme, was carried out using Matlab-Simulink. Simulation study showed that the switching frequency variations in a fundamental cycle and over the entire speed range of the linear modulation region, is similar to that of a VC-SVPWM based multi-level VSI. The proposed hysteresis controller is experimentally verified on a 7.5 kW IM vector control drive fed with a five-level VSI. The proposed current error space vector based hysteresis controller providing nearly constant switching frequency is implemented on a TI TMS320LF2812 DSP and Xilinx XC3S200FT256 FPGA based platform. The three-phase reference currents are generated depending on the frequency command and the controller is tested with the drive for the entire operating speed range of the machine in forward and reverse directions. Steady state and quick transient results of the proposed drive are presented in this thesis. This thesis also proposes another type of hysteresis controller, firstly for 2-level inverter and then for general n-level multi-level inverter, which eliminates the parabolic boundary and replaces it with a boundary which is computed online and does not use any look up table for boundary selection. The current error boundary for the proposed hysteresis controller is computed online in a very simple way, using the information of estimated fundamental stator voltages along α and β axes of space vector plane. The method adopted for the proposed controller to compute the boundary does not involve any complicated computations and it selects the optimal vector for switching when current error space vector crosses the boundary. This way adjacent voltage vector switching similar to VC-SVPWM can be ensured. For 2-level inverter, it precisely determines the sector, in which reference voltage vector is present. In multi-level inverter, this controller also finds out the mapped sector information using the same mapping techniques as explained in the first part of this thesis. In both 2-level and multi-level inverter, the proposed controller does not use any look up table for finding individual voltage vector switching times from the estimated voltage references. These switching times are used for the computation of hysteresis boundary for individual vectors. Thus the hysteresis boundary for individual vectors is exactly calculated and the boundary is similar to that of VC-SVPWM scheme for the respective levels of inverter. In the present scheme, the phase voltage harmonic spectrum is very close to that of a constant switching frequency VC-SVPWM inverter. In this thesis, at first, the proposed on line boundary computation scheme is implemented for a 2-level inverter based controller for the initial study, so that it can be executed as fast as 10 µs in a DSP platform, which is required for accurate current control. Then the same algorithm of 2-level inverter is extended for multi-level inverter with the additional logic for online identification of nearest switching voltage vectors (also used in the parabolic boundary case) for the present sampling interval. Previously mentioned mapping technique for multi-level inverter, is also implemented here to bring down the phase voltage references to the inner-most carrier region to realize the multi-level current control strategy equivalent to that of a 2-level inverter PWM current control. Simulation study to verify the steady state as well as transient performance of the proposed controller for both 2-level as well as five-level VSI fed IM drive is carried out using Simulink tool box of MATLAB Simulation Software. The proposed hysteresis controllers are experimentally verified on a 7.5 kW IM vector control drive fed with a two-level VSI and five-level VSI separately. The proposed current error space vector based hysteresis controller providing nearly constant switching frequency profile for phase voltage is implemented on the TI TMS320LF2812 DSP and Xilinx XC3S200FT256 FPGA based platform. The three-phase reference currents are generated depending on the frequency command and the proposed hysteresis controllers are tested with drive for the entire operating speed range of the machine in forward and reverse directions. Steady state and transient results of the proposed drive are also presented for different operating conditions, through the simulation study followed by experimental verifications. Even though the simulation and experimental verifications are done on a 5-level inverter to explain the proposed hysteresis controller, it can be easily implemented for any general n-level inverter, as described in this thesis.
9

Multilevel Dodecagonal Space Vector Structures and Modulation Schemes with Hybrid Topologies for Variable Speed AC Drives

Kaarthik, R Sudharshan January 2015 (has links) (PDF)
MULTILEVEL inverters are the preferred choice of converters for electronic power conversion for high power applications. They are gaining popularity in variety of industrial applications including electric motor drives, transportation, energy management, transmission and distribution of power. A large portion of energy conversion systems comprises of multilevel inverter fed induction motor drives. The multilevel inverters are ideal for such applications, since the switching frequency of the devices can be kept low. In conventional two level inverters, to get nearly sinusoidal phase current waveform, the switching frequency of the inverter is increased and the harmonics in the currents are pushed higher in the frequency spectrum to reduce the size and cost of the filters. But higher switching frequency has its own drawbacks – in particular for medium voltage, high power applications. They cause large dv_/ dt stresses on the motor terminals and the switching devices, leading to increased electromagnetic interference (EMI) problems and higher switching losses. Harmonics in the motor currents can further be minimized by adopting dodecagonal voltage space vector (SV) switching (12-sided polygon). In case of dodecagonal SV switching, the fifth and seventh order (6n , 1, n = odd) harmonics are completely eliminated for the full modulation range including over modulation and twelve step operation in the motor phase voltages and currents. In addition to low order harmonic current suppression, the linear modulation range for dodecagonal SV switching is also more by 6% when compared to that of the conventional hexagonal SV switching. The dodecagonal voltage SV structure is made possible by connecting two inverters with DC-link voltages Vd and 0:366Vd on either side of an open-end winding induction motor. The dodecagonal space vector switching can be used to produce better quality phase voltage and current waveforms and overcome the problem of low order fifth and seventh harmonic currents and to improve the range for linear modulation while reducing the switching frequency of the inverters when compared to that of the conventional hexagonal space vector based inverters. This thesis focuses on three aspects of multilevel dodecagonal space vector structures (i) Two new power circuit topologies that generate a multilevel dodecagonal voltage space vector structure with symmetric triangles, (ii) A multilevel dodecagonal SV structure with nineteen concentric dodecagons, (iii) Pulse width modulation (PWM) timing calculation methods for a general N-level dodecagonal SV structure. (i) Two new power circuit topologies capable of generating multilevel dodecagonal voltage space vector structure with symmetric triangles with minimum number of DC link power supplies and floating capacitor H-bridges are proposed. The first power topology is composed of two hybrid cascaded five level inverters connected to either side of an open end winding induction machine. Each inverter consists of a three level neutral point clamped (NPC) inverter, cascaded with an isolated capacitor fed H-bridge making it a five level inverter. The second topology is a hybrid topology for a normal induction motor (star or delta connected), where the power is fed to the motor only from one side. The proposed scheme retains all the advantages of multilevel topologies as well the advantages of the dodecagonal voltage space vector structure. Both topologies have inherent capacitor balancing for floating H-bridges for all modulation indices including transient operations. The proposed topologies do not require any pre-charging circuitry for startup. PWM timing calculation method for space vector modulation is also explored in this chapter. Due to the symmetric arrangement of congruent triangles within the voltage space vector structure, the timing computation requires only the sampled reference values and does not require any iterative searching, off-line computation, look-up tables or angle estimation. Experimental results for steady state operation and transient operation are also presented to validate the proposed concept. (ii) A multilevel dodecagonal voltage space vector structure with nineteen concentric do-decagons is proposed for the first time. This space vector structure is achieved by connecting two sets of asymmetric hybrid five level inverters on either side of an open-end winding induction motor. The dodecagonal structure is made possible by proper selection of DC-link voltages and switching states of the inverters. In addition to that, a generic and simple method for calculation of PWM timings using only sampled reference values (v and v ) is proposed. This enables the scheme to be used for any closed loop application like vector control. Also, a new switching technique is proposed which ensures minimum switching while eliminating the fifth and seventh order harmonics and suppressing the eleventh and thirteenth harmonics, eliminating the need for bulky filters. The motor phase voltage is a 24-stepped waveform for the entire modulation range thereby reducing the number of switchings of the individual inverter modules. Experimental results for steady state operation, transient operation including start-up have been presented and the results of Fast Fourier Transform (FFT) analysis is also presented for validating the proposed concept. (iii) A method to obtain PWM timings for a general N-level dodecagonal voltage space vector structure using only sampled reference values is proposed. Typical methods that are used to find PWM timings for dodecagonal SV structures use modulation index and the reference vector angle, to get the timings T1 and T2 using trigonometric calculations. This method requires look-up tables and is difficult to implement in closed loop systems. The proposed method requires only two additions to compute these timings. For multilevel case, typical iterative methods need timing calculations (matrix multiplications) to be performed for each triangle. The proposed method is generic and can be extended to any number of levels with symmetric structures and does not require any iterative searching for locating the triangle in which the tip of the reference vector lies. The algorithm outputs the triangle number and the PWM timing values of T0, T1 and T2 which can be set as the compare values for any carrier based PWM module to obtain space vector PWM like switching sequences. Simulation and experimental results for steady state and transient conditions have been presented to validate the proposed method. A 3.7 kW, 415 V, 50 Hz, 4-pole open-end winding induction motor was used for the experimental studies. The semiconductor switches that were used to realize the power circuit for the experiment were 75 A, 1200 V insulated-gate bipolar transistor (IGBT) half-bridge modules (SKM75GB12T4). Opto-isolated gate drivers with desaturation protection (M57962L) were used to drive the IGBTs. For the speed control and PWM timing computation a digital signal processor (DSP-TMS320F28335) with a clock frequency of 150 MHz was used. For modulation frequencies 10 Hz and below, a constant sampling frequency of 1 kHz was used as the frequency modulation ratio is high. For modulation frequencies above 10 Hz, synchronous PWM strategy was used. The time duration Ts is the sampling interval for which the timings T1 , T2 and T0 are calculated. As in the case of any synchronous PWM method, the duration of sampling time (Ts) is a function of the fundamental frequency of the modulating signal. In this case, Ts = 1_.fm • 12n) sec. where fm is fundamental frequency in Hertz and ‘n’ is the number of samples per 30ý dodecagonal sector. The PWM timings and the triangle data (from the DSP) is fed to field programmable gate array (FPGA) (SPARTAN XC3S200) clocked at 50 MHz where the actual gating pulses are generated. The capacitor balancing algorithm and the dead-time modules were implemented within FPGA. No external hardware was used for generation of dead-time. The dead-time block generates a constant dead-time of 2 s for all the switches. Extensive testing was done for steady state operations and transient operations including quick acceleration and start-up to validate the proposed concepts. With the advantages like extension of linear modulation range, elimination of fifth and seventh harmonics in phase voltages and currents for the full modulation range, suppression of eleventh and thirteenth harmonics in phase voltages and currents, reduced device voltage ratings, lesser dv_dt stresses on devices and motor phase windings, lower switching frequency, inherent cascaded H-bridge (CHB) capacitor balancing, the proposed space vector structures, the inverter power circuit topologies, the switching techniques and the PWM timing calculation methods can be considered as viable schemes for medium voltage, high power motor drive applications.

Page generated in 0.4307 seconds