• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Studies on Current Hysteresis Controllers and Low Order Harmonic Suppression Techniques for IM Drives with Dodecagoal Voltage Space Vectors

Azeez, Najath Abdul January 2013 (has links) (PDF)
Multilevel inverters are very popular for medium and high-voltage induction motor (IM) drive applications. They have superior performance compared to 2-level inverters such as reduced harmonic content in output voltage and current, lower common mode voltage and dv/dt, and lesser voltage stress on power switches. To get nearly sinusoidal current waveforms, the switching frequency of the conventional inverters have to be in¬creased. This will lead to higher switching losses and electromagnetic interference. The problem in using lower switching frequency is the introduction of low order harmonics in phase currents and undesirable torque ripple in the motor. The 5th and 7th harmonics are dominant for hexagonal voltage space-vector based low frequency switching. Dodecagonal voltage space-vector based multilevel inverters have been proposed as an improvement over the conventional hexagonal space vector based inverters. They achieve complete elimination of 5th and 7th order harmonics throughout the modulation range. The linear modulation range is also extended by about 6.6%, since the dodecagon is closer to circle than a hexagon. The previous works on dodecagonal voltage space vector based VSI fed drives used voltage controlled PWM (VC-PWM). Although these controllers are more popular, they have inferior dynamic performance when compared to current controlled PWM (CC¬PWM). VSIs using current controlled PWM have excellent dynamic response, inherent short-circuit protection and are simple to implement. The conventional CC-PWM tech¬niques have large switching frequency variation and large current ripple in steady-state. xix As a result, there has been significant research interest to achieve current controlled VSI fed IM drives with constant switching frequency. Two current error space vector (CESV) based hysteresis controllers for dodecagonal voltage space-vector based VSI fed induction motor drives are proposed in this work. The proposed controllers achieve nearly constant switching frequency at steady state operation, similar to VC-SVPWM based VSI fed IM drives. They also have fast dynamic response while at the same time achieving complete elimination of fifth and seventh order harmonics for the entire modulation range, due to dodecagonal voltage vector switching. The first work proposes a nearly constant switching frequency current error space vector (CESV) based hysteresis controller for an IM drive with single dodecagonal voltage space vectors. Parabolic boundaries computed offline are used in the proposed controller. An open-end winding induction motor is fed from two inverters with asymmetrical DC link voltages, to generate the dodecagonal voltage space vectors. The drive scheme is first studied at different frequencies with a space vector based PWM (SVPWM) control, to obtain the current error space vector boundaries. The CESV boundary at each frequency can be approximated with four parabolas. These parabolic boundaries are used in the proposed controller to limit the CESV trajectory. Due to symmetries in the parabolas only two set of parabola parameters, at different frequencies, need to be stored. A generalized next vector selection logic, valid for all sectors and rotation direction, is used in the proposed controller. For this an axis transformation is done in all sectors, to bring the CESV trajectory to the first sector. The sector information is obtained from the estimated fundamental stator phase voltage. The proposed controller is extensively studied using vector control at different frequencies and transient conditions. This controller maintains nearly constant switching frequency at steady state operation, similar to VC-SVPWM inverters, while at the same time achieving better dynamic performance and complete elimination of 5th and 7th order harmonics throughout the modulation range. In the second work the nearly constant switching frequency current hysteresis con¬troller is extended to multilevel dodecagonal voltage space-vector based IM drives, with online computation of CESV boundaries. The multilevel dodecagonal space-vector dia¬gram has different types of triangles, and the previously proposed methods for multilevel hexagonal VSI based current hysteresis controllers cannot be used directly. The CESV trajectory of the VC-SVPWM, obtained for present triangular region, is used as the reference trajectory of the proposed controller. The CESV reference boundaries are com¬puted online, using switching dwell time and voltage error vector of each applied vector. These quantities are calculated from estimated sampled reference phase voltages, which are found out from the stator current error ripple and the parameters of the induction motor. Whenever the actual current error space vector crosses the reference CESV tra¬jectory, an appropriate vector that will force it along the reference trajectory is switched. Extensive study of the proposed controller using vector control is done at different fre¬quencies and transient conditions. This controller has all the advantages of multilevel switching like low dv/dt, lesser electromagnetic interference, lower switch voltage stress and lesser harmonic distortion, in addition to all the dynamic performance advantages of the previous controller. The third work proposes an elegant 5th and 7th order harmonic suppression tech¬nique for open end winding split-phase induction motors, using capacitor fed inverters. Split-phase induction motors have been proposed to reduce the torque and flux ripples of conventional three-phase IM. But these motors have high 5th and 7th order harmonics in the stator windings due to lack of back-emf for these frequencies. A space-vector harmonic analysis of the split-phase IM is conducted and possible 5th and 7th order harmonic sup¬pression techniques studied. A simple harmonic suppression scheme is proposed, which requires the use of only capacitor fed inverters. A PWM scheme that can maintain the capacitor voltage as well as suppress the 5th and 7th order harmonics is also proposed. To test the performance of the proposed scheme, an open-loop v/f control is used on an open-end winding split-phase induction motor under no-load condition. Synchronized PWM with two samples per sector was used, for frequencies above 10 Hz. The har¬monic spectra of the phase voltages and currents were computed and compared with the traditional SVPWM scheme, to highlight the harmonic suppression. The concepts were initially simulated in Matlab/Simulink. Experimental verifica¬tion was done using laboratory prototypes at low power. While these concepts maybe easily extended to higher power levels by using suitably rated devices, the control tech¬niques presented shall still remain applicable. TMS320F2812 DSP platform was used to execute the control code for the proposed drive schemes. For the first work the output pins of the DSP was directly used to drive the inverter switches through a dead-band circuit. For the other two works, DSP outputs the sector information and the PWM signals. The PWM terminals and I/O lines of the DSP is used to output the timings and the triangle number respectively. An FPGA (XC3S200) was used to translate the sector information and the PWM signals to IGBT gate signal logic. A constant dead-time of 1.5 µs was also implemented inside the FPGA. Opto-isolated gate drivers with desaturation protection (M57962L) were used to drive the IGBTs. The phase currents and DC bus voltages were measured using hall-effect sensors. An incremental shaft position encoder was also connected to the motor to measure the angular velocity. The switches were realized using 1200 V, 75 A IGBT half bridge modules.
2

Induction Motor Drives Based on Multilevel Dodecagonal and Octadecagonal Volatage Space Vectors

Mathew, K January 2013 (has links) (PDF)
For medium and high-voltage drive applications, multilevel inverters are very popular. It is due to their superior performance compared to 2-level inverters such as reduced harmonic content in the output voltage and current, lower common mode voltage and dv=dt, and lesser voltage stress on power switches. The popular circuit topologies for multilevel inverters are neutral point clamped, cascaded H-bridge and flying capacitor based circuits. There exist different combinations of these basic topologies to realize multilevel inverters with modularity, better fault tolerance, and reliability. Due to these advantages, multilevel converters are getting good acceptance from the industry, and researchers all over the world are continuously trying to improve the performance of these converters. To meet such demands, three multilevel inverter topologies are proposed in this thesis. These topologies can be used for high-power induction motor drives, and the concepts presented are also applicable for synchronous motor drives, grid-connected inverters, etc. To get nearly sinusoidal phase current waveforms, the switching frequency of the conventional inverter has to be increased. It will lead to higher switching losses and electromagnetic interference. The problem with lower switching frequency is the intro- duction of low order harmonics in phase currents and undesirable torque ripple in the motor. The 5th and 7th harmonics are dominant for hexagonal voltage space-vector based low frequency switching, and it is possible to eliminate these harmonics by dodecagonal switching. Further improvement in the waveform quality is possible by octadecagonal voltage space-vectors. In this case, the complete elimination of 11th and 13th harmonic is possible for the entire modulation range. The concepts of dodecagonal and octadecagonal voltage space-vectors are used in the proposed inverter topologies. The first topology proposed in this thesis consists of cascaded connection of two H-bridge cells. The two cells are fed from unequal DC voltage sources having a ratio of 1 : 0:366, and this inverter can produce six concentric dodecagonal voltage space- vectors. This ratio of voltages can be obtained easily from a combination of star-delta transformers, since 1 : 0:366 = ( p 3 + 1) : 1. The cascaded connection of two H-bridge cells can generate nine asymmetric pole voltage levels, and the combined three-phase inverter can produce 729 voltage space-vectors (9 9 9). From this large number of combinations, only certain voltage space-vectors are selected, which forms dodecagonal pattern. In the case of conventional multilevel inverters, the voltage space-vector diagram consists of equilateral triangles of equal size, but for the proposed inverter, the triangular regions are isosceles and are having different sizes. By properly placing the voltage space-vectors in a sampling period, it is possible to achieve lower switching frequency for the individual cells, with substantial improvement in the harmonic spectrum of the output voltage. During the experimental veri cation, the motor is operated at di erent speeds using open loop v=f control method. The samples taken are always synchronised with the start of the sector to get synchronised PWM. The number of samples per sector is decreased with increase in the fundamental frequency to limit the switching frequency. Even though many topologies are available in literature, the most preferred topology for drives application such as traction drives is the 3-level NPC structure. This implies that the industry is still looking for viable alternatives to construct multilevel inverter topologies based on available power circuits. The second work focuses on the development of a multilevel inverter for variable speed medium-voltage drive application with dodecagonal voltage space-vectors, using lesser number of switches and power sources compared to earlier implementations. It can generate three concentric 12-sided polygonal voltage space-vectors and it is based on commonly available 2-level and 3-level inverters. A simple PWM timing computation method based on the hexagonal space-vector PWM is developed. The sampled values of the three-phase reference voltages are initially converted to the timings of a two-level inverter. These timings are mapped to the dodecagonal timings using a change of basis transformation. The voltage space- vector diagram of the proposed drive consists of sixty isosceles triangular regions, and the dodecagonal timings calculated are converted to the timings of the inner triangles. A searching algorithm is used to identify the triangular region in which the reference vector is located. A front-end recti er that may be easily implemented using standard star-delta transformers is also developed, to provide near-unity power factor. To test the performance of the inverter drive, an open-loop v=f control is used on a three-phase induction motor under no-load condition. The harmonic spectra of the phase voltages were computed in order to analyse the harmonic distortion of the waveforms. The carrier frequency was kept around 1.2 KHz for the entire range of operation. If the switching frequency is decreased, the conventional hexagonal space-vector based switching introduce signifi cant 5th, 7th, 11th and 13th harmonics in the phase currents. Out of these dominant harmonics, the 5th and 7th harmonics can be completely suppressed using dodecagonal voltage space-vector based switching as observed in the first and second work. It is also possible to remove the 11th and the 13th harmonics by using voltage space-vectors with 18 sides. The last topology is based on multilevel octadecagonal (18-sided polygon) voltage space-vectors, and it has better harmonic performance than the previously mentioned topologies. Here, a multilevel inverter system capable of producing three octadecagonal voltage space-vectors is proposed for the fi rst time, along with a simple timing calculation method. The conventional three-level inverters are only required to construct the proposed drive. Four asymmetric power supply voltages with 0:3054Vdc, 0:3473Vdc, 0:2266Vdc and 0:1207Vdc are required for the operation of the drive, and it is the main drawback of the circuit. Generally front-end isolation transformer is essential for high-power drives and these asymmetric voltages can be easily obtained from the multiple windings of the isolation transformer. The total harmonic distortion of the phase current is improved due to the 18-sided voltage space-vector switching. The ratio of the radius of the largest polygon and its inscribing circle is cos10 = 0:985. This ratio in the case of hexagonal voltage space-vector modulation is cos30 = 0:866, which means that the range of the linear modulation for the proposed scheme is signifi cantly higher. The drive is designed for open-end winding induction motors and it has better fault tolerance. It any of the inverter fails, it can be easily bypassed and the drive will be still functional with reduced speed. Open loop v=f control and rotor flux oriented vector control schemes were used during the experimental verifi cation. TMS320F2812 DSP platform was used to execute the control code for the proposed drive schemes. For the entire range of operation, the carrier was synchronized with the fundamental. For the synchronization, the sampling period is varied dynamically so that the number of samples in a triangular region is fi xed, keeping the switching frequency around 1.2 KHz. The average execution time for the v=f code was found to be 20 S, where as for vector control it took nearly 100 S. The PWM terminals and I/O lines of the DSP is used to output the timings and the triangle number respectively. To convert the triangle number and the timings to IGBT gate drive logic, an FPGA (XC3S200) was used. A constant dead-time of 1.5 S is also implemented inside the FPGA. Opto-isolated gate drivers with desaturation protection (M57962L) were used to drive the IGBTs. Hall-effect sensors were used to measure the phase currents and DC bus voltages. An incremental shaft position encoder with 2500 pulse per revolution is also connected to the motor shaft, to measure the angular velocity. 1200 V, 75 A IGBT half-bridge module is used to realize the switches. The concepts were initially simulated and experimentally verifi ed using laboratory prototypes at low power. While these concepts maybe easily extended to higher power levels by using suitably rated devices, the control techniques presented shall still remain applicable.
3

Induction Motor Drives Based on Multilevel Dodecagonal and Octadecagonal Volatage Space Vectors

Mathew, K January 2013 (has links) (PDF)
For medium and high-voltage drive applications, multilevel inverters are very popular. It is due to their superior performance compared to 2-level inverters such as reduced harmonic content in the output voltage and current, lower common mode voltage and dv=dt, and lesser voltage stress on power switches. The popular circuit topologies for multilevel inverters are neutral point clamped, cascaded H-bridge and flying capacitor based circuits. There exist different combinations of these basic topologies to realize multilevel inverters with modularity, better fault tolerance, and reliability. Due to these advantages, multilevel converters are getting good acceptance from the industry, and researchers all over the world are continuously trying to improve the performance of these converters. To meet such demands, three multilevel inverter topologies are proposed in this thesis. These topologies can be used for high-power induction motor drives, and the concepts presented are also applicable for synchronous motor drives, grid-connected inverters, etc. To get nearly sinusoidal phase current waveforms, the switching frequency of the conventional inverter has to be increased. It will lead to higher switching losses and electromagnetic interference. The problem with lower switching frequency is the intro- duction of low order harmonics in phase currents and undesirable torque ripple in the motor. The 5th and 7th harmonics are dominant for hexagonal voltage space-vector based low frequency switching, and it is possible to eliminate these harmonics by dodecagonal switching. Further improvement in the waveform quality is possible by octadecagonal voltage space-vectors. In this case, the complete elimination of 11th and 13th harmonic is possible for the entire modulation range. The concepts of dodecagonal and octadecagonal voltage space-vectors are used in the proposed inverter topologies. The first topology proposed in this thesis consists of cascaded connection of two H-bridge cells. The two cells are fed from unequal DC voltage sources having a ratio of 1 : 0:366, and this inverter can produce six concentric dodecagonal voltage space- vectors. This ratio of voltages can be obtained easily from a combination of star-delta transformers, since 1 : 0:366 = ( p 3 + 1) : 1. The cascaded connection of two H-bridge cells can generate nine asymmetric pole voltage levels, and the combined three-phase inverter can produce 729 voltage space-vectors (9 9 9). From this large number of combinations, only certain voltage space-vectors are selected, which forms dodecagonal pattern. In the case of conventional multilevel inverters, the voltage space-vector diagram consists of equilateral triangles of equal size, but for the proposed inverter, the triangular regions are isosceles and are having different sizes. By properly placing the voltage space-vectors in a sampling period, it is possible to achieve lower switching frequency for the individual cells, with substantial improvement in the harmonic spectrum of the output voltage. During the experimental veri cation, the motor is operated at di erent speeds using open loop v=f control method. The samples taken are always synchronised with the start of the sector to get synchronised PWM. The number of samples per sector is decreased with increase in the fundamental frequency to limit the switching frequency. Even though many topologies are available in literature, the most preferred topology for drives application such as traction drives is the 3-level NPC structure. This implies that the industry is still looking for viable alternatives to construct multilevel inverter topologies based on available power circuits. The second work focuses on the development of a multilevel inverter for variable speed medium-voltage drive application with dodecagonal voltage space-vectors, using lesser number of switches and power sources compared to earlier implementations. It can generate three concentric 12-sided polygonal voltage space-vectors and it is based on commonly available 2-level and 3-level inverters. A simple PWM timing computation method based on the hexagonal space-vector PWM is developed. The sampled values of the three-phase reference voltages are initially converted to the timings of a two-level inverter. These timings are mapped to the dodecagonal timings using a change of basis transformation. The voltage space- vector diagram of the proposed drive consists of sixty isosceles triangular regions, and the dodecagonal timings calculated are converted to the timings of the inner triangles. A searching algorithm is used to identify the triangular region in which the reference vector is located. A front-end recti er that may be easily implemented using standard star-delta transformers is also developed, to provide near-unity power factor. To test the performance of the inverter drive, an open-loop v=f control is used on a three-phase induction motor under no-load condition. The harmonic spectra of the phase voltages were computed in order to analyse the harmonic distortion of the waveforms. The carrier frequency was kept around 1.2 KHz for the entire range of operation. If the switching frequency is decreased, the conventional hexagonal space-vector based switching introduce signifi cant 5th, 7th, 11th and 13th harmonics in the phase currents. Out of these dominant harmonics, the 5th and 7th harmonics can be completely suppressed using dodecagonal voltage space-vector based switching as observed in the first and second work. It is also possible to remove the 11th and the 13th harmonics by using voltage space-vectors with 18 sides. The last topology is based on multilevel octadecagonal (18-sided polygon) voltage space-vectors, and it has better harmonic performance than the previously mentioned topologies. Here, a multilevel inverter system capable of producing three octadecagonal voltage space-vectors is proposed for the fi rst time, along with a simple timing calculation method. The conventional three-level inverters are only required to construct the proposed drive. Four asymmetric power supply voltages with 0:3054Vdc, 0:3473Vdc, 0:2266Vdc and 0:1207Vdc are required for the operation of the drive, and it is the main drawback of the circuit. Generally front-end isolation transformer is essential for high-power drives and these asymmetric voltages can be easily obtained from the multiple windings of the isolation transformer. The total harmonic distortion of the phase current is improved due to the 18-sided voltage space-vector switching. The ratio of the radius of the largest polygon and its inscribing circle is cos10 = 0:985. This ratio in the case of hexagonal voltage space-vector modulation is cos30 = 0:866, which means that the range of the linear modulation for the proposed scheme is signifi cantly higher. The drive is designed for open-end winding induction motors and it has better fault tolerance. It any of the inverter fails, it can be easily bypassed and the drive will be still functional with reduced speed. Open loop v=f control and rotor flux oriented vector control schemes were used during the experimental verifi cation. TMS320F2812 DSP platform was used to execute the control code for the proposed drive schemes. For the entire range of operation, the carrier was synchronized with the fundamental. For the synchronization, the sampling period is varied dynamically so that the number of samples in a triangular region is fi xed, keeping the switching frequency around 1.2 KHz. The average execution time for the v=f code was found to be 20 S, where as for vector control it took nearly 100 S. The PWM terminals and I/O lines of the DSP is used to output the timings and the triangle number respectively. To convert the triangle number and the timings to IGBT gate drive logic, an FPGA (XC3S200) was used. A constant dead-time of 1.5 S is also implemented inside the FPGA. Opto-isolated gate drivers with desaturation protection (M57962L) were used to drive the IGBTs. Hall-effect sensors were used to measure the phase currents and DC bus voltages. An incremental shaft position encoder with 2500 pulse per revolution is also connected to the motor shaft, to measure the angular velocity. 1200 V, 75 A IGBT half-bridge module is used to realize the switches. The concepts were initially simulated and experimentally verifi ed using laboratory prototypes at low power. While these concepts maybe easily extended to higher power levels by using suitably rated devices, the control techniques presented shall still remain applicable.
4

Multilevel Dodecagonal Space Vector Structures and Modulation Schemes with Hybrid Topologies for Variable Speed AC Drives

Kaarthik, R Sudharshan January 2015 (has links) (PDF)
MULTILEVEL inverters are the preferred choice of converters for electronic power conversion for high power applications. They are gaining popularity in variety of industrial applications including electric motor drives, transportation, energy management, transmission and distribution of power. A large portion of energy conversion systems comprises of multilevel inverter fed induction motor drives. The multilevel inverters are ideal for such applications, since the switching frequency of the devices can be kept low. In conventional two level inverters, to get nearly sinusoidal phase current waveform, the switching frequency of the inverter is increased and the harmonics in the currents are pushed higher in the frequency spectrum to reduce the size and cost of the filters. But higher switching frequency has its own drawbacks – in particular for medium voltage, high power applications. They cause large dv_/ dt stresses on the motor terminals and the switching devices, leading to increased electromagnetic interference (EMI) problems and higher switching losses. Harmonics in the motor currents can further be minimized by adopting dodecagonal voltage space vector (SV) switching (12-sided polygon). In case of dodecagonal SV switching, the fifth and seventh order (6n , 1, n = odd) harmonics are completely eliminated for the full modulation range including over modulation and twelve step operation in the motor phase voltages and currents. In addition to low order harmonic current suppression, the linear modulation range for dodecagonal SV switching is also more by 6% when compared to that of the conventional hexagonal SV switching. The dodecagonal voltage SV structure is made possible by connecting two inverters with DC-link voltages Vd and 0:366Vd on either side of an open-end winding induction motor. The dodecagonal space vector switching can be used to produce better quality phase voltage and current waveforms and overcome the problem of low order fifth and seventh harmonic currents and to improve the range for linear modulation while reducing the switching frequency of the inverters when compared to that of the conventional hexagonal space vector based inverters. This thesis focuses on three aspects of multilevel dodecagonal space vector structures (i) Two new power circuit topologies that generate a multilevel dodecagonal voltage space vector structure with symmetric triangles, (ii) A multilevel dodecagonal SV structure with nineteen concentric dodecagons, (iii) Pulse width modulation (PWM) timing calculation methods for a general N-level dodecagonal SV structure. (i) Two new power circuit topologies capable of generating multilevel dodecagonal voltage space vector structure with symmetric triangles with minimum number of DC link power supplies and floating capacitor H-bridges are proposed. The first power topology is composed of two hybrid cascaded five level inverters connected to either side of an open end winding induction machine. Each inverter consists of a three level neutral point clamped (NPC) inverter, cascaded with an isolated capacitor fed H-bridge making it a five level inverter. The second topology is a hybrid topology for a normal induction motor (star or delta connected), where the power is fed to the motor only from one side. The proposed scheme retains all the advantages of multilevel topologies as well the advantages of the dodecagonal voltage space vector structure. Both topologies have inherent capacitor balancing for floating H-bridges for all modulation indices including transient operations. The proposed topologies do not require any pre-charging circuitry for startup. PWM timing calculation method for space vector modulation is also explored in this chapter. Due to the symmetric arrangement of congruent triangles within the voltage space vector structure, the timing computation requires only the sampled reference values and does not require any iterative searching, off-line computation, look-up tables or angle estimation. Experimental results for steady state operation and transient operation are also presented to validate the proposed concept. (ii) A multilevel dodecagonal voltage space vector structure with nineteen concentric do-decagons is proposed for the first time. This space vector structure is achieved by connecting two sets of asymmetric hybrid five level inverters on either side of an open-end winding induction motor. The dodecagonal structure is made possible by proper selection of DC-link voltages and switching states of the inverters. In addition to that, a generic and simple method for calculation of PWM timings using only sampled reference values (v and v ) is proposed. This enables the scheme to be used for any closed loop application like vector control. Also, a new switching technique is proposed which ensures minimum switching while eliminating the fifth and seventh order harmonics and suppressing the eleventh and thirteenth harmonics, eliminating the need for bulky filters. The motor phase voltage is a 24-stepped waveform for the entire modulation range thereby reducing the number of switchings of the individual inverter modules. Experimental results for steady state operation, transient operation including start-up have been presented and the results of Fast Fourier Transform (FFT) analysis is also presented for validating the proposed concept. (iii) A method to obtain PWM timings for a general N-level dodecagonal voltage space vector structure using only sampled reference values is proposed. Typical methods that are used to find PWM timings for dodecagonal SV structures use modulation index and the reference vector angle, to get the timings T1 and T2 using trigonometric calculations. This method requires look-up tables and is difficult to implement in closed loop systems. The proposed method requires only two additions to compute these timings. For multilevel case, typical iterative methods need timing calculations (matrix multiplications) to be performed for each triangle. The proposed method is generic and can be extended to any number of levels with symmetric structures and does not require any iterative searching for locating the triangle in which the tip of the reference vector lies. The algorithm outputs the triangle number and the PWM timing values of T0, T1 and T2 which can be set as the compare values for any carrier based PWM module to obtain space vector PWM like switching sequences. Simulation and experimental results for steady state and transient conditions have been presented to validate the proposed method. A 3.7 kW, 415 V, 50 Hz, 4-pole open-end winding induction motor was used for the experimental studies. The semiconductor switches that were used to realize the power circuit for the experiment were 75 A, 1200 V insulated-gate bipolar transistor (IGBT) half-bridge modules (SKM75GB12T4). Opto-isolated gate drivers with desaturation protection (M57962L) were used to drive the IGBTs. For the speed control and PWM timing computation a digital signal processor (DSP-TMS320F28335) with a clock frequency of 150 MHz was used. For modulation frequencies 10 Hz and below, a constant sampling frequency of 1 kHz was used as the frequency modulation ratio is high. For modulation frequencies above 10 Hz, synchronous PWM strategy was used. The time duration Ts is the sampling interval for which the timings T1 , T2 and T0 are calculated. As in the case of any synchronous PWM method, the duration of sampling time (Ts) is a function of the fundamental frequency of the modulating signal. In this case, Ts = 1_.fm • 12n) sec. where fm is fundamental frequency in Hertz and ‘n’ is the number of samples per 30ý dodecagonal sector. The PWM timings and the triangle data (from the DSP) is fed to field programmable gate array (FPGA) (SPARTAN XC3S200) clocked at 50 MHz where the actual gating pulses are generated. The capacitor balancing algorithm and the dead-time modules were implemented within FPGA. No external hardware was used for generation of dead-time. The dead-time block generates a constant dead-time of 2 s for all the switches. Extensive testing was done for steady state operations and transient operations including quick acceleration and start-up to validate the proposed concepts. With the advantages like extension of linear modulation range, elimination of fifth and seventh harmonics in phase voltages and currents for the full modulation range, suppression of eleventh and thirteenth harmonics in phase voltages and currents, reduced device voltage ratings, lesser dv_dt stresses on devices and motor phase windings, lower switching frequency, inherent cascaded H-bridge (CHB) capacitor balancing, the proposed space vector structures, the inverter power circuit topologies, the switching techniques and the PWM timing calculation methods can be considered as viable schemes for medium voltage, high power motor drive applications.

Page generated in 0.0689 seconds