• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Active Reactive Induction Motor - A New Solution For Load Commutated SCR-CSI Based High Power Drives

Hatua, Kamalesh 11 1900 (has links) (PDF)
This thesis deals with a new solution for medium voltage drives. Load Commutated Inverter (LCI) fed synchronous motor drive is a popular solution for high power drive applications. Though the induction machine is more rugged and cheaper compared to the synchronous machine, LCI fed induction motor drive solution is not available. The basic advantage of a synchronous machine over an induction machine is the fact that the synchronous machine can operate at leading power factor. Due to this property load commutation of SCR switches of the LCI is achievable for synchronous machine. On the contrary an induction machine always draws lagging power factor current; this makes it unsuitable as a drive motor for LCI technology. In this thesis a new LCI fed induction motor drive configuration is developed as an alternative for synchronous motor drives. A new variant of six phase induction motor is proposed in this context. The machine is named as Active Reactive Induction Machine (ARIM). The ARIM contains two sets of three-phase windings with isolated neutral. Both the windings have a common axis. One winding carries the active power and can be wound for higher voltage (say 11kV). The other winding supplies the total reactive power of the machine and can be wound for lower voltage (say 2.2 kV). The rotor is a standard squirrel cage. High power induction machines usually demand lesser magnitude of reactive power compared to the total power rating of the machine ( 20% ). Therefore excitation winding has a smaller fraction of the total machine rating compared to the power winding. A VSI with an LC filter supplies reactive power to the ARIM through the excitation winding and ensures leading power factor at the power winding. This is similar to the excitation control of the LCI fed synchronous machine. The direct VSI connection is possible due to the lower voltage rating for the excitation winding. In this way, the VSI voltage rating does not limit the highest motor voltage that can be handled. An LCI supplies the real power into the ARIM from the power winding. The LCI currents are quasi square wave in shape. Therefore they have rich low order harmonic content. They cause 6th and 12th harmonic torque pulsations in the machine. This is a problem for the LCI fed synchronous machine drive. In the proposed drive, the VSI can compensate these low frequency m.m.f. harmonics inside the machine air gap to remove torque pulsation and rotor harmonic losses. The advantage of the proposed topology is that no transformer is required to drive an 11kV machine. It is always desirable to feed sinusoidal voltage and current to both the power winding and the excitation winding. To address this problem, a second configuration is proposed. A low power three-level VSI is connected in shunt at the power winding with the proposed ARIM drive as discussed above. This VSI compensates the low frequency harmonic currents to achieve sinusoidal motor currents at the motor winding. This VSI acts as a shunt active filter and compensates for the lower order harmonics injected by the LCI. The proposed topologies have LC filters to maintain sinusoidal motor voltages and currents by absorbing the VSI switching frequency components. But the motor terminal voltage oscillates at system resonant frequency due to the presence of LC filters. These resonant components in the terminal voltages are required to be eliminated for smooth terminal voltages and safe load commutation of the thyristors. In this thesis a simple active damping method is proposed to mitigate these issues. The proposed topologies are experimentally verified with an ARIM with 415 V power winding and 220 V excitation winding. The control is carried out on a digital platform having a TMS 320LF 2407A DSP processor and an ALTERA CYCLONE FPGA processor. Results from the prototype experimental drive are presented to show the feasibility and performance of the proposed drive configurations.
2

Control Of High Power Wound Field Synchronous Motor Drives - Modelling Of Salient Pole Machine, Field Oriented Control Using VSI, LCI And Hybrid LCI/VSI Converters

Jain, Amit Kumar 11 1900 (has links) (PDF)
This thesis proposes control schemes and converter configurations for high power wound field synchronous motor (WFSM) drives. The model for a salient pole WFSM in any general rotating reference frame is developed which can be used to derive models along known rotor (dq) and stator flux (MT) reference frames. Based on these models, the principle of sensor-less stator flux oriented field-oriented control (FOC) for salient pole WFSM is developed. So far in the literature, control of cylindrical rotor machine only has been addressed and the effects of saliency have generally been neglected. The performance of the proposed sensor-less FOC has been demonstrated by experimentally operating a 15.8 HP salient pole WFSM using a three-level IGBT based voltage source inverter (VSI). The principle of FOC has been later extended to the control of current source load commutated inverter (LCI) fed salient pole WFSM drives, where the drawbacks present in conventional self-control method such as rigorous off-line calculation for generation of look up tables, coupling between flux and torque control etc. are eliminated. This thesis also proposes the combination of a VSI with the LCI power circuit to overcome the different disadvantages that are present in the existing LCI topology. Firstly, a novel starting scheme is proposed, where the LCI fed WFSM is started with the aid of a low power auxiliary VSI converter in a smooth manner with sinusoidal motor currents and voltages. This overcomes the difficulties of the present complex dc link current pulsing technique that has drawbacks such as pulsating torque, long starting time etc. In a second mode of operation, it is shown that the VSI can be connected to the existing LCI fed WFSM drive as a harmonic compensator in On-The-Fly mode; this will make the terminal stator current and voltage sinusoidal apart from cancellation of torque pulsations thus improving the drive performance. The above two schemes have potential as retrofit for existing drives. It is possible to combine both the advantages, mentioned above, by permanently connecting the VSI with the LCI power circuit to feed the WFSM. This proposed hybrid LCI/VSI drive can be regarded as a universal solution for high power synchronous motor drives at all power and speed ranges.
3

Investigations On Dodecagonal Space Vector Generation For Induction Motor Drives

Das, Anandarup 10 1900 (has links)
Multilevel converters are finding increased attention in industry and academia as the preferred choice of electronic power conversion for high power applications. They have a wide application area in a variety of industries involving transportation and energy management, a significant portion of which comprises of multilevel inverter fed induction motor drives. Multilevel inverters are ideally suitable for high power drives, since the switching frequency of the devices is limited for high power applications. In low power drives, the switching frequency is often in the range of tens of kHz, so that switching frequency harmonics are pushed higher in the frequency spectrum thereby the size and cost of the filter are reduced. But higher switching frequency has its own drawbacks, in particular for high voltage, high power applications. They cause large dv/dt stress on the motor and the devices, increased EMI problems and higher switching losses. An engineering trade-o is thus needed to select the minimum switching frequency without compromising on the output voltage quality. The present work is an alternate approach in this direction. Here, new inverter topologies and PWM strategies are developed that can eliminate a set of harmonics in the phase voltage using 12-sided polygonal space vector diagrams, also called dodecagonal space vector diagrams. A dodecagonal space vector diagram has many advantages over a hexagonal one. Switching space vectors on a dodecagon will not produce any harmonics of the order 6n 1, (n=odd) in the phase voltage. The next set of harmonics thus reside at 12n 1, (n=integer). By increasing the number of samples in a sector, it is also possible to suppress the lower order harmonics and a nearly sinusoidal voltage can be obtained. This is possible to achieve at a low switching frequency of the inverters. At the same time, a dodecagon is closer to a circle than a hexagon; so the linear modulation range is extended by about 6.6% compared to the hexagonal case. For a 50 Hz rated frequency operation, under constant V/f ratio, the linear modulation can be achieved upto a frequency of 48.3 Hz. Also, the harmonics of the order 6n 1, (n=odd) are absent in the over-modulation region. Maximum fundamental voltage is obtained from this inverter at the end of over-modulation region, where the phase voltage becomes a 12-step waveform. The present work is developed on dodecagonal space vector diagrams. The entire work can be summarized and explained through Fig. 1. This figure shows the development of hexagonal and dodecagonal space vector diagrams. It is known that, 3-level and 5-level space vector diagrams have been developed as an improvement over 2-level ones. They Figure 1: Development of hexagonal and dodecagonal space vector diagrams have better harmonic performance, reduced dv/dt stress on the motor and devices, better electromagnetic compatibility and improvement of efficiency over 2-level space vector diagrams. This happens because the instantaneous error between the reference vector and the switching vectors reduces, as the space vector density increases in the diagram. This is shown at the top of the figure. In the bottom part, the development of the dodecagonal space vector diagram is shown, which is the contribution of this thesis work. This is explained in brief in the following lines. Initially, a space vector diagram is proposed which switches on hexagonal space vectors in lower-modulation region and dodecagonal space vectors in the higher modulation region. As the reference vector length increases, voltage vectors at the vertices of the outer dodecagon and the vertices from the outer most hexagon is used for PWM control. This results in highly suppressed 5th and 7th order harmonics thereby improving the harmonic profile of the motor current. This leads to the 12-step operation at rated voltage where all the 5th and 7th order harmonics are completely eliminated. At the same time, the linear range of modulation extends upto 96.6% of base speed. Because of this, and the high degree of suppression of lower order harmonics, smooth acceleration of the motor upto rated speed is possible. The presence of multilevel space vector structure also limits the switching frequency of the inverters. In the next work, the single dodecagonal space vector diagram is improved upon to form two concentric dodecagons spanning the space vector plane (Fig. 1). The radius of the outer dodecagon is double the inner one. It reduces the device rating and the dv/dt stress on the devices to half compared to existing 12-sided schemes. The entire space vector diagram is divided into smaller sized isosceles triangles. PWM switching on these smaller triangles reduces the inverter switching frequency without compromising on the output voltage quality. The space vector diagram is further refined to accommodate six concentric dodecagons in the space vector plane (Fig. 1). Here the space vector diagram is characterized by alternately placed dodecagons which become closer to each other at higher radii. As such the harmonics in the phase voltage are reduced, in particular at higher modulation indices. At the same time, because of the dodecagonal space vector structure, all the 6n ± 1, (n=odd) harmonics are eliminated from the phase voltage. A nearly sinusoidal phase voltage can be generated without resorting to high frequency switching of the inverters. The above space vector diagrams are developed using different inverter circuits. The first work is developed from cascaded combination of three 2-level inverters, while the second and third works use 3-level NPC inverters feeding an open end induction motor drive. The circuit topologies are explained in detail in the respective chapters. Apart from this, PWM switching schemes and detailed analysis on duty cycle calculations using the concept of volt-second balance are also presented. They show that with proper switching schemes, the proposed configurations can substantially reduce the overall loss of the inverter. Other operational issues like capacitor voltage balancing of 3-level NPC inverters and improvement of input current drawn from the grid are also covered. All the above propositions are first simulated by MATLAB and subsequently verified by an experimental laboratory prototype. Motor current waveforms both at steady state and transient conditions during motor acceleration show that the induction motor can be fed from nearly sinusoidal voltage at all operating conditions. Simplified comparative studies are also made with the proposed converters and higher level inverters in terms of output voltage quality and losses. These are some of the constituents for chapters 2, 3 and 4 in this thesis. Additionally, the first chapter also covers a brief survey on some of the recent progresses made in the field of multilevel inverter. The thesis concludes with some interesting ideas for further thought and exploration.
4

Synchronised Pulsewidth Modulation Strategies Based On Space Vector Approach For Induction Motor Drives

Narayanan, G 08 1900 (has links)
In high power induction motor drives, the switching frequency of the inverter is quite low due to the high losses in the power devices. Real-time PWM strategies, which result in reduced harmonic distortion under low switching frequencies and have maximum possible DC bus utilisation, are developed for such drives in the present work. The space vector approach is taken up for the generation of synchronised PWM waveforms with 3-Phase Symmetry, Half Wave Symmetry and Quarter Wave Symmetry, required for high-power drives. Rules for synchronisation and the waveform symmetries are brought out. These rules are applied to the conventional and modified forms of space vector modulation, leading to the synchronised conventional space vector strategy and the Basic Bus Clamping Strategy-I, respectively. Further, four new synchronised, bus-clamping PWM strategies, namely Asymmetric Zero-Changing Strategy, Boundary Sampling Strategy-I, Basic Bus Clamping Strategy-II and Boundary Sampling Strategy-II, are proposed. These strategies exploit the flexibilities offered by the space vector approach like double-switching of a phase within a subcycle, clamping of two phases within a subcycle etc. It is shown that the PWM waveforms generated by these strategies cannot be generated by comparing suitable 3-phase modulating waves with a triangular carrier wave. A modified two-zone approach to overmodulation is proposed. This is applied to the six synchronised PWM strategies, dealt with in the present work, to extend the operation of these strategies upto the six-step mode. Linearity is ensured between the magnitude of the reference and the fundamental voltage generated in the whole range of modulation upto the six-step mode. This is verified experimentally. A suitable combination of these strategies leads to a significant reduction in the harmonic distortion of the drive at medium and high speed ranges over the conventional space vector strategy. This reduction in harmonic distortion is demonstrated, theoretically as well as experimentally, on a constant V/F drive of base frequency 50Hz for three values of maximum switching frequency of the inverter, namely 450Hz, 350Hz and 250Hz. Based on the notion of stator flux ripple, analytical closed-form expressions are derived for the harmonic distortion due to the different PWM strategies. The values of harmonic distortion, computed based on these analytical expressions, compare well with those calculated based on Fourier analysis and those measured experimentally.
5

Induction Motor Drives Based on Multilevel Dodecagonal and Octadecagonal Volatage Space Vectors

Mathew, K January 2013 (has links) (PDF)
For medium and high-voltage drive applications, multilevel inverters are very popular. It is due to their superior performance compared to 2-level inverters such as reduced harmonic content in the output voltage and current, lower common mode voltage and dv=dt, and lesser voltage stress on power switches. The popular circuit topologies for multilevel inverters are neutral point clamped, cascaded H-bridge and flying capacitor based circuits. There exist different combinations of these basic topologies to realize multilevel inverters with modularity, better fault tolerance, and reliability. Due to these advantages, multilevel converters are getting good acceptance from the industry, and researchers all over the world are continuously trying to improve the performance of these converters. To meet such demands, three multilevel inverter topologies are proposed in this thesis. These topologies can be used for high-power induction motor drives, and the concepts presented are also applicable for synchronous motor drives, grid-connected inverters, etc. To get nearly sinusoidal phase current waveforms, the switching frequency of the conventional inverter has to be increased. It will lead to higher switching losses and electromagnetic interference. The problem with lower switching frequency is the intro- duction of low order harmonics in phase currents and undesirable torque ripple in the motor. The 5th and 7th harmonics are dominant for hexagonal voltage space-vector based low frequency switching, and it is possible to eliminate these harmonics by dodecagonal switching. Further improvement in the waveform quality is possible by octadecagonal voltage space-vectors. In this case, the complete elimination of 11th and 13th harmonic is possible for the entire modulation range. The concepts of dodecagonal and octadecagonal voltage space-vectors are used in the proposed inverter topologies. The first topology proposed in this thesis consists of cascaded connection of two H-bridge cells. The two cells are fed from unequal DC voltage sources having a ratio of 1 : 0:366, and this inverter can produce six concentric dodecagonal voltage space- vectors. This ratio of voltages can be obtained easily from a combination of star-delta transformers, since 1 : 0:366 = ( p 3 + 1) : 1. The cascaded connection of two H-bridge cells can generate nine asymmetric pole voltage levels, and the combined three-phase inverter can produce 729 voltage space-vectors (9 9 9). From this large number of combinations, only certain voltage space-vectors are selected, which forms dodecagonal pattern. In the case of conventional multilevel inverters, the voltage space-vector diagram consists of equilateral triangles of equal size, but for the proposed inverter, the triangular regions are isosceles and are having different sizes. By properly placing the voltage space-vectors in a sampling period, it is possible to achieve lower switching frequency for the individual cells, with substantial improvement in the harmonic spectrum of the output voltage. During the experimental veri cation, the motor is operated at di erent speeds using open loop v=f control method. The samples taken are always synchronised with the start of the sector to get synchronised PWM. The number of samples per sector is decreased with increase in the fundamental frequency to limit the switching frequency. Even though many topologies are available in literature, the most preferred topology for drives application such as traction drives is the 3-level NPC structure. This implies that the industry is still looking for viable alternatives to construct multilevel inverter topologies based on available power circuits. The second work focuses on the development of a multilevel inverter for variable speed medium-voltage drive application with dodecagonal voltage space-vectors, using lesser number of switches and power sources compared to earlier implementations. It can generate three concentric 12-sided polygonal voltage space-vectors and it is based on commonly available 2-level and 3-level inverters. A simple PWM timing computation method based on the hexagonal space-vector PWM is developed. The sampled values of the three-phase reference voltages are initially converted to the timings of a two-level inverter. These timings are mapped to the dodecagonal timings using a change of basis transformation. The voltage space- vector diagram of the proposed drive consists of sixty isosceles triangular regions, and the dodecagonal timings calculated are converted to the timings of the inner triangles. A searching algorithm is used to identify the triangular region in which the reference vector is located. A front-end recti er that may be easily implemented using standard star-delta transformers is also developed, to provide near-unity power factor. To test the performance of the inverter drive, an open-loop v=f control is used on a three-phase induction motor under no-load condition. The harmonic spectra of the phase voltages were computed in order to analyse the harmonic distortion of the waveforms. The carrier frequency was kept around 1.2 KHz for the entire range of operation. If the switching frequency is decreased, the conventional hexagonal space-vector based switching introduce signifi cant 5th, 7th, 11th and 13th harmonics in the phase currents. Out of these dominant harmonics, the 5th and 7th harmonics can be completely suppressed using dodecagonal voltage space-vector based switching as observed in the first and second work. It is also possible to remove the 11th and the 13th harmonics by using voltage space-vectors with 18 sides. The last topology is based on multilevel octadecagonal (18-sided polygon) voltage space-vectors, and it has better harmonic performance than the previously mentioned topologies. Here, a multilevel inverter system capable of producing three octadecagonal voltage space-vectors is proposed for the fi rst time, along with a simple timing calculation method. The conventional three-level inverters are only required to construct the proposed drive. Four asymmetric power supply voltages with 0:3054Vdc, 0:3473Vdc, 0:2266Vdc and 0:1207Vdc are required for the operation of the drive, and it is the main drawback of the circuit. Generally front-end isolation transformer is essential for high-power drives and these asymmetric voltages can be easily obtained from the multiple windings of the isolation transformer. The total harmonic distortion of the phase current is improved due to the 18-sided voltage space-vector switching. The ratio of the radius of the largest polygon and its inscribing circle is cos10 = 0:985. This ratio in the case of hexagonal voltage space-vector modulation is cos30 = 0:866, which means that the range of the linear modulation for the proposed scheme is signifi cantly higher. The drive is designed for open-end winding induction motors and it has better fault tolerance. It any of the inverter fails, it can be easily bypassed and the drive will be still functional with reduced speed. Open loop v=f control and rotor flux oriented vector control schemes were used during the experimental verifi cation. TMS320F2812 DSP platform was used to execute the control code for the proposed drive schemes. For the entire range of operation, the carrier was synchronized with the fundamental. For the synchronization, the sampling period is varied dynamically so that the number of samples in a triangular region is fi xed, keeping the switching frequency around 1.2 KHz. The average execution time for the v=f code was found to be 20 S, where as for vector control it took nearly 100 S. The PWM terminals and I/O lines of the DSP is used to output the timings and the triangle number respectively. To convert the triangle number and the timings to IGBT gate drive logic, an FPGA (XC3S200) was used. A constant dead-time of 1.5 S is also implemented inside the FPGA. Opto-isolated gate drivers with desaturation protection (M57962L) were used to drive the IGBTs. Hall-effect sensors were used to measure the phase currents and DC bus voltages. An incremental shaft position encoder with 2500 pulse per revolution is also connected to the motor shaft, to measure the angular velocity. 1200 V, 75 A IGBT half-bridge module is used to realize the switches. The concepts were initially simulated and experimentally verifi ed using laboratory prototypes at low power. While these concepts maybe easily extended to higher power levels by using suitably rated devices, the control techniques presented shall still remain applicable.
6

Induction Motor Drives Based on Multilevel Dodecagonal and Octadecagonal Volatage Space Vectors

Mathew, K January 2013 (has links) (PDF)
For medium and high-voltage drive applications, multilevel inverters are very popular. It is due to their superior performance compared to 2-level inverters such as reduced harmonic content in the output voltage and current, lower common mode voltage and dv=dt, and lesser voltage stress on power switches. The popular circuit topologies for multilevel inverters are neutral point clamped, cascaded H-bridge and flying capacitor based circuits. There exist different combinations of these basic topologies to realize multilevel inverters with modularity, better fault tolerance, and reliability. Due to these advantages, multilevel converters are getting good acceptance from the industry, and researchers all over the world are continuously trying to improve the performance of these converters. To meet such demands, three multilevel inverter topologies are proposed in this thesis. These topologies can be used for high-power induction motor drives, and the concepts presented are also applicable for synchronous motor drives, grid-connected inverters, etc. To get nearly sinusoidal phase current waveforms, the switching frequency of the conventional inverter has to be increased. It will lead to higher switching losses and electromagnetic interference. The problem with lower switching frequency is the intro- duction of low order harmonics in phase currents and undesirable torque ripple in the motor. The 5th and 7th harmonics are dominant for hexagonal voltage space-vector based low frequency switching, and it is possible to eliminate these harmonics by dodecagonal switching. Further improvement in the waveform quality is possible by octadecagonal voltage space-vectors. In this case, the complete elimination of 11th and 13th harmonic is possible for the entire modulation range. The concepts of dodecagonal and octadecagonal voltage space-vectors are used in the proposed inverter topologies. The first topology proposed in this thesis consists of cascaded connection of two H-bridge cells. The two cells are fed from unequal DC voltage sources having a ratio of 1 : 0:366, and this inverter can produce six concentric dodecagonal voltage space- vectors. This ratio of voltages can be obtained easily from a combination of star-delta transformers, since 1 : 0:366 = ( p 3 + 1) : 1. The cascaded connection of two H-bridge cells can generate nine asymmetric pole voltage levels, and the combined three-phase inverter can produce 729 voltage space-vectors (9 9 9). From this large number of combinations, only certain voltage space-vectors are selected, which forms dodecagonal pattern. In the case of conventional multilevel inverters, the voltage space-vector diagram consists of equilateral triangles of equal size, but for the proposed inverter, the triangular regions are isosceles and are having different sizes. By properly placing the voltage space-vectors in a sampling period, it is possible to achieve lower switching frequency for the individual cells, with substantial improvement in the harmonic spectrum of the output voltage. During the experimental veri cation, the motor is operated at di erent speeds using open loop v=f control method. The samples taken are always synchronised with the start of the sector to get synchronised PWM. The number of samples per sector is decreased with increase in the fundamental frequency to limit the switching frequency. Even though many topologies are available in literature, the most preferred topology for drives application such as traction drives is the 3-level NPC structure. This implies that the industry is still looking for viable alternatives to construct multilevel inverter topologies based on available power circuits. The second work focuses on the development of a multilevel inverter for variable speed medium-voltage drive application with dodecagonal voltage space-vectors, using lesser number of switches and power sources compared to earlier implementations. It can generate three concentric 12-sided polygonal voltage space-vectors and it is based on commonly available 2-level and 3-level inverters. A simple PWM timing computation method based on the hexagonal space-vector PWM is developed. The sampled values of the three-phase reference voltages are initially converted to the timings of a two-level inverter. These timings are mapped to the dodecagonal timings using a change of basis transformation. The voltage space- vector diagram of the proposed drive consists of sixty isosceles triangular regions, and the dodecagonal timings calculated are converted to the timings of the inner triangles. A searching algorithm is used to identify the triangular region in which the reference vector is located. A front-end recti er that may be easily implemented using standard star-delta transformers is also developed, to provide near-unity power factor. To test the performance of the inverter drive, an open-loop v=f control is used on a three-phase induction motor under no-load condition. The harmonic spectra of the phase voltages were computed in order to analyse the harmonic distortion of the waveforms. The carrier frequency was kept around 1.2 KHz for the entire range of operation. If the switching frequency is decreased, the conventional hexagonal space-vector based switching introduce signifi cant 5th, 7th, 11th and 13th harmonics in the phase currents. Out of these dominant harmonics, the 5th and 7th harmonics can be completely suppressed using dodecagonal voltage space-vector based switching as observed in the first and second work. It is also possible to remove the 11th and the 13th harmonics by using voltage space-vectors with 18 sides. The last topology is based on multilevel octadecagonal (18-sided polygon) voltage space-vectors, and it has better harmonic performance than the previously mentioned topologies. Here, a multilevel inverter system capable of producing three octadecagonal voltage space-vectors is proposed for the fi rst time, along with a simple timing calculation method. The conventional three-level inverters are only required to construct the proposed drive. Four asymmetric power supply voltages with 0:3054Vdc, 0:3473Vdc, 0:2266Vdc and 0:1207Vdc are required for the operation of the drive, and it is the main drawback of the circuit. Generally front-end isolation transformer is essential for high-power drives and these asymmetric voltages can be easily obtained from the multiple windings of the isolation transformer. The total harmonic distortion of the phase current is improved due to the 18-sided voltage space-vector switching. The ratio of the radius of the largest polygon and its inscribing circle is cos10 = 0:985. This ratio in the case of hexagonal voltage space-vector modulation is cos30 = 0:866, which means that the range of the linear modulation for the proposed scheme is signifi cantly higher. The drive is designed for open-end winding induction motors and it has better fault tolerance. It any of the inverter fails, it can be easily bypassed and the drive will be still functional with reduced speed. Open loop v=f control and rotor flux oriented vector control schemes were used during the experimental verifi cation. TMS320F2812 DSP platform was used to execute the control code for the proposed drive schemes. For the entire range of operation, the carrier was synchronized with the fundamental. For the synchronization, the sampling period is varied dynamically so that the number of samples in a triangular region is fi xed, keeping the switching frequency around 1.2 KHz. The average execution time for the v=f code was found to be 20 S, where as for vector control it took nearly 100 S. The PWM terminals and I/O lines of the DSP is used to output the timings and the triangle number respectively. To convert the triangle number and the timings to IGBT gate drive logic, an FPGA (XC3S200) was used. A constant dead-time of 1.5 S is also implemented inside the FPGA. Opto-isolated gate drivers with desaturation protection (M57962L) were used to drive the IGBTs. Hall-effect sensors were used to measure the phase currents and DC bus voltages. An incremental shaft position encoder with 2500 pulse per revolution is also connected to the motor shaft, to measure the angular velocity. 1200 V, 75 A IGBT half-bridge module is used to realize the switches. The concepts were initially simulated and experimentally verifi ed using laboratory prototypes at low power. While these concepts maybe easily extended to higher power levels by using suitably rated devices, the control techniques presented shall still remain applicable.

Page generated in 0.0475 seconds