• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigations On Dodecagonal Space Vector Generation For Induction Motor Drives

Das, Anandarup 10 1900 (has links)
Multilevel converters are finding increased attention in industry and academia as the preferred choice of electronic power conversion for high power applications. They have a wide application area in a variety of industries involving transportation and energy management, a significant portion of which comprises of multilevel inverter fed induction motor drives. Multilevel inverters are ideally suitable for high power drives, since the switching frequency of the devices is limited for high power applications. In low power drives, the switching frequency is often in the range of tens of kHz, so that switching frequency harmonics are pushed higher in the frequency spectrum thereby the size and cost of the filter are reduced. But higher switching frequency has its own drawbacks, in particular for high voltage, high power applications. They cause large dv/dt stress on the motor and the devices, increased EMI problems and higher switching losses. An engineering trade-o is thus needed to select the minimum switching frequency without compromising on the output voltage quality. The present work is an alternate approach in this direction. Here, new inverter topologies and PWM strategies are developed that can eliminate a set of harmonics in the phase voltage using 12-sided polygonal space vector diagrams, also called dodecagonal space vector diagrams. A dodecagonal space vector diagram has many advantages over a hexagonal one. Switching space vectors on a dodecagon will not produce any harmonics of the order 6n 1, (n=odd) in the phase voltage. The next set of harmonics thus reside at 12n 1, (n=integer). By increasing the number of samples in a sector, it is also possible to suppress the lower order harmonics and a nearly sinusoidal voltage can be obtained. This is possible to achieve at a low switching frequency of the inverters. At the same time, a dodecagon is closer to a circle than a hexagon; so the linear modulation range is extended by about 6.6% compared to the hexagonal case. For a 50 Hz rated frequency operation, under constant V/f ratio, the linear modulation can be achieved upto a frequency of 48.3 Hz. Also, the harmonics of the order 6n 1, (n=odd) are absent in the over-modulation region. Maximum fundamental voltage is obtained from this inverter at the end of over-modulation region, where the phase voltage becomes a 12-step waveform. The present work is developed on dodecagonal space vector diagrams. The entire work can be summarized and explained through Fig. 1. This figure shows the development of hexagonal and dodecagonal space vector diagrams. It is known that, 3-level and 5-level space vector diagrams have been developed as an improvement over 2-level ones. They Figure 1: Development of hexagonal and dodecagonal space vector diagrams have better harmonic performance, reduced dv/dt stress on the motor and devices, better electromagnetic compatibility and improvement of efficiency over 2-level space vector diagrams. This happens because the instantaneous error between the reference vector and the switching vectors reduces, as the space vector density increases in the diagram. This is shown at the top of the figure. In the bottom part, the development of the dodecagonal space vector diagram is shown, which is the contribution of this thesis work. This is explained in brief in the following lines. Initially, a space vector diagram is proposed which switches on hexagonal space vectors in lower-modulation region and dodecagonal space vectors in the higher modulation region. As the reference vector length increases, voltage vectors at the vertices of the outer dodecagon and the vertices from the outer most hexagon is used for PWM control. This results in highly suppressed 5th and 7th order harmonics thereby improving the harmonic profile of the motor current. This leads to the 12-step operation at rated voltage where all the 5th and 7th order harmonics are completely eliminated. At the same time, the linear range of modulation extends upto 96.6% of base speed. Because of this, and the high degree of suppression of lower order harmonics, smooth acceleration of the motor upto rated speed is possible. The presence of multilevel space vector structure also limits the switching frequency of the inverters. In the next work, the single dodecagonal space vector diagram is improved upon to form two concentric dodecagons spanning the space vector plane (Fig. 1). The radius of the outer dodecagon is double the inner one. It reduces the device rating and the dv/dt stress on the devices to half compared to existing 12-sided schemes. The entire space vector diagram is divided into smaller sized isosceles triangles. PWM switching on these smaller triangles reduces the inverter switching frequency without compromising on the output voltage quality. The space vector diagram is further refined to accommodate six concentric dodecagons in the space vector plane (Fig. 1). Here the space vector diagram is characterized by alternately placed dodecagons which become closer to each other at higher radii. As such the harmonics in the phase voltage are reduced, in particular at higher modulation indices. At the same time, because of the dodecagonal space vector structure, all the 6n ± 1, (n=odd) harmonics are eliminated from the phase voltage. A nearly sinusoidal phase voltage can be generated without resorting to high frequency switching of the inverters. The above space vector diagrams are developed using different inverter circuits. The first work is developed from cascaded combination of three 2-level inverters, while the second and third works use 3-level NPC inverters feeding an open end induction motor drive. The circuit topologies are explained in detail in the respective chapters. Apart from this, PWM switching schemes and detailed analysis on duty cycle calculations using the concept of volt-second balance are also presented. They show that with proper switching schemes, the proposed configurations can substantially reduce the overall loss of the inverter. Other operational issues like capacitor voltage balancing of 3-level NPC inverters and improvement of input current drawn from the grid are also covered. All the above propositions are first simulated by MATLAB and subsequently verified by an experimental laboratory prototype. Motor current waveforms both at steady state and transient conditions during motor acceleration show that the induction motor can be fed from nearly sinusoidal voltage at all operating conditions. Simplified comparative studies are also made with the proposed converters and higher level inverters in terms of output voltage quality and losses. These are some of the constituents for chapters 2, 3 and 4 in this thesis. Additionally, the first chapter also covers a brief survey on some of the recent progresses made in the field of multilevel inverter. The thesis concludes with some interesting ideas for further thought and exploration.
2

Switched Capacitive Filtering Scheme for Harmonic Suppression in Variable Speed AC Drives

Pramanick, Sumit Kumar January 2016 (has links) (PDF)
For low and medium power applications, conventional two-level inverters are widely used in industrial applications including electric vehicle drives, traction drives, distributed generation, power management and grid connected renewable energy systems. To filter out the harmonic currents from the load, passive line filters are used. These filters are designed to pass the fundamental phase current and suppress higher harmonic currents, making the filters bulky. To get a nearly sinusoidal current waveform, these two level inverters are switched at high frequency to shift the harmonic components in the phase current to high frequencies to reduce size and cost of the filter. But higher switching frequencies have some drawbacks like large dV /dt stresses on the motor terminals and switching devices, leading to electro-magnetic interference (EMI) problems and higher switching losses. For full DC bus utilization to enhance the power output from the two level inverter, the inverter has to operate in overmodulation region up to the six-step operation. Considerable fifth and seventh order (6n ± 1, n = odd) harmonics are produced when the inverter operates in overmodulation region. These include some low order harmonics like fifth and seventh, which are currently suppressed by using bulky passive line filters. Different high frequency modulation schemes are uniquely used in overmodulation region to suppress these harmonics. Another well accepted method of harmonic suppression is the selective harmonic elimination (SHE) techniques. SHE introduces notches at specific angles in a fundamental period of the inverter pole voltage to eliminate a particular harmonic component from the pole voltage. But, SHE involves extensive offline computation and requirement for higher memory for implementation of huge lookup tables. dodecagonal voltage space vectors have been reported in literature. Dodecagonal voltage space vector structures inherently eliminate fifth and seventh order (6n ± 1, n = odd) harmonics from the phase voltage. However, these require multiple isolated and unequal DC supplies (like VDC and 0.366VDC ). Generating DC voltage supplies at particular ratio to the main DC supply, requires additional circuitry. This increases the size of the converter and four quadrant back to back operation is not possible for the converter. To overcome the problems mentioned above, a novel switched capacitive filtering technique is proposed in this work for low and medium power drives applications. The filtering is done by an inverter fed by capacitor. A novel method to ensure zero power contribution by an inverter is shown, enabling the inverter to be fed by a capacitor. Thus, the capacitor fed inverter is shown to operate as a switched capacitive filter, which generates harmonic voltages that gets eliminated from the phase voltage of conventional two level inverters. With the proposed switched capacitive filtering technique, the following benefits are achieved. • Fifth and seventh order (6n ± 1, n = odd) harmonics are eliminated from the phase voltage, for the full modulation range of the two level inverters even while operating in overmodulation region and six-step mode. Thus, bulky passive line filters are avoided. • Since, the capacitive filter does not contribute any active power to the load, single DC supply operation is possible. Hence, four quadrant back to back operations is possible with the proposed filtering technique. • Dodecagonal voltage space vector structures are realized using single DC supply for the first time. • Modulation techniques for different power circuit topologies have been proposed which inherently controls the capacitor voltage at specific voltage levels for the full modulation range of the inverter including six-step operation. Hence, no additional pre-charging circuitry is required. • High frequency switching is shifted to the capacitive filter which is at a low voltage compared to the DC supply fed power contributing inverter. Thus, the main inverter need not be switched at high switching frequency for harmonic suppression. This reduces the switching loss as compared to conventional inverters, to achieve harmonic suppression of comparable order. • Reduced voltage stress on the switches of the switched capacitive filter. Hence, low voltage devices can be used to implement the switched capacitive filter, reducing the cost and size drastically as compared to conventional passive line filters. The proposed switched capacitive filtering scheme has been realized for open-end winding induction motor drive and three phase star connected three terminal induction motor drive where conventional two level inverter is used as the power contributing inverter. Additionally, extension of the capacitive filtering scheme to multilevel inverter fed drives is also shown, where the main power contributing inverter is a three level flying capacitor (FC) inverter. The power circuit implementations are briefly described as following. (i) In open-end winding three phase induction motors, the two terminals of each of the three phase windings are accessed. The main DC bus connected two level inverter feeds power from one end of the motor terminals. A capacitor fed two level inverter eliminates the fifth and seventh order harmonics from the other end for the full modulation range including overmodulation and six-step operation of DC bus fed inverter. The voltage space vectors from both the inverters connected at opposite ends of the motor forms dodecagonal voltage space vectors. An uniform pulse width modulation (PWM), for the full modulation range is proposed which switches from the dodecagonal voltage space vectors while inherently maintaining the capacitor voltage at 0.289VDC . (ii) In conventional star connection of three phase induction motors, all three terminals of the three phase windings are shorted from one end, leaving access to just three terminals. Such three terminal induction motor fed to conventional two level inverter is commonly used in many drives applications. Capacitor fed H-bridges are cascaded to such two-level inverters, to eliminate the fifth and seventh order harmonics from the phase voltage for the full modulation range including overmodulation and six-step operation of DC fed inverter. The voltage space vectors from capacitor fed H-bridges get added to the voltage space vectors from the two level inverter to form dodecagonal voltage space vectors. A PWM technique for the full modulation range is proposed to switch from the dodecagonal voltage space vector while inherently maintaining the three H-bridge connected capacitor voltages at 0.1445VDC . (iii) Advantages of dodecagonal space vector switching and multilevel inverters are achieved with a single DC supply. A DC supply fed three level flying capacitor (FC) inverter feeds active power to one end of the induction motor winding terminals and H-bridge connected capacitors eliminate fifth and seventh order harmonics from the other end of the motor winding terminals. The voltage space vectors from the three level FC inverter and the H-bridge inverter forms a three level dodecagonal voltage space vectors with symmetric triangular sectors. A PWM technique is developed to switch the three level dodecagonal space vectors and simultaneously control the H-bridge connected capacitors at 0.1445VDC . The fifth and seventh order harmonics are eliminated for the full modulation range of the three level FC inverter, including the extreme six-step operation. Additionally, the proposed inverter has also been shown to operate for rotor field oriented vector control of the open-end winding induction motor drive. For all the power circuit implementation of the switched capacitive filter, an increase of 7.8% in the linear modulation range (up to 48.8Hz) is achieved, implying better DC bus utilization as compared to conventional inverter topologies switching from hexagonal voltage space vectors. With advantages like fifth and seventh order (6n ± 1, n = odd) harmonic elimination throughout the modulation range, reduced dv/dt stress, lower switching frequency in high voltage devices, single DC supply requirement, dodecagonal voltage space vector switching, PWM technique with inherent capacitor balancing, increased linear modulation range and reduced voltage stress on high frequency switches, the proposed switched capacitive filtering scheme is well suited for low and medium power drives application with requirements for high dynamic performance and precise speed control.
3

Investigation On Dodecagonal Multilevel Voltage Space Vector Structures By Cascading Flying Capacitor And Floating H-Bridge Cells For Medium Voltage IM Drives

Mathew, Jaison 07 1900 (has links) (PDF)
In high-power electric drives, multilevel inverters are generally deployed to address issues such as electromagnetic interference, switch voltage stress and harmonic distortion. The switching frequency of the inverter is always kept low, of the order of 1KHz or even less to reduce switching losses and synchronous pulse width modulation (PWM) is used to avoid the problem of sub-harmonics and beat frequencies. This is particularly important if the switching frequency is very low. The synchronous PWM is getting popularity as its realization is very easy with digital controllers compared to analog controllers. Neutral-point-clamped (NPC) inverters, cascaded H-bridge, and flying-capacitor multilevel inverters are some of the popular schemes used for high-power applications. Hybrids of these multilevel inverters have also been proposed recently to take advantage of the basic configurations. Multilevel inverters can also be realized by feeding the induction motor from both ends (open-end winding) using conventional inverter structures. For controlling the output voltage of these inverters, various PWM techniques are used. Chapter-1 of this thesis provides an over view of the various multilevel inverter schemes preceded by a discussion on basic two-level VSI topology. The inverters used in motor drive applications have to be operated in over-modulation range in order to extract the maximum fundamental output voltage that is possible from the dc-link. Operation in this high modulation range is required to meet temporary overloads or to have maximum power operation in the high speed range (flux weakened region). This, however, introduces a substantial amount of low order harmonics in the Motor phase voltages. Due to these low-order harmonic frequencies, the dynamic performance of the drive is lost and the current control schemes are severely affected especially due to 5th and 7th harmonic components. Further, due to these low-order harmonics and non-linear PWM operation in over-modulation region, frequent over-current fault conditions occur and reliability of the drive is jeopardized. The twelve sided-polygonal space vector diagram (dodecagonal space vectors) can be used to overcome the problem of low order 5th and 7th harmonics and to give more range for linear modulation while keeping the switching frequency at a minimum compared to conventional hexagonal space vector based inverters. Thus, the dodecagonal space-vector switching can be viewed as an engineering compromise between low switching frequency and quality load current waveform. Most of the previous works of dodecagonal space-vector generation schemes are based on NPC inverters. However, sophisticated charge control schemes are required in NPC inverters to deal with the neutral-point voltage fluctuation and the neutral-point voltage shifting issues. The losses in the clamping diodes are another major concern. In the second chapter, a multilevel dodecagonal space-vector generation scheme based on flying capacitor topology, utilizing an open end winding induction motor is presented. The neutral point charge-balancing problem reported in the previous works is not present in this scheme, the clamping diodes are eliminated and the number of power supplies required has been reduced. The capacitors have inherent charge balancing capability, and the charge control is done once in every switching cycle, which gives tight voltage control for the capacitors. For the speed control of induction motors, the space-vector PWM scheme is more advantageous than the sine-triangle PWM as it gives a more linear range of operation and improved harmonic performance. One major disadvantage with the conventional space-vector PWM is that the trigonometric operations demand formidable computational efforts and look-up tables. Carrier based, common-mode injected PWM schemes have been proposed to simplify the PWM process. However, the freedom of selecting the PWM switching sequences is limited here. Another way of obtaining SVPWM is using the reference voltage samples and the nearest vector information to switch appropriate devices for proper time intervals, realizing the reference vector in an average sense. In-formation regarding the sector and nearest vectors can be easily obtained by comparing the instantaneous amplitudes of the reference voltages. This PWM approach is pro-posed for the speed control of the motor in this thesis. The trigonometric operations and the requirement of large look-up tables in the conventional SVPWM are avoided in this method. It has the additional advantage that the switching sequences can be decided at will, which is helpful in reducing further, the harmonic distortion in certain frequency ranges. In this way, this method tries to combine the advantages of vector based methods (conventional SVPWM) and scalar methods (carrier-based methods). The open-end winding schemes allowed the required phase voltage levels to be generated quite easily by feeding from both ends of the windings. Thus, most of the multilevel inverters based on dodecagonal space-vector structures relied on induction motors with open-end windings. The main disadvantage of open-end winding induction motor is that six wires are to be run from the inverter to the motor, which may be unacceptable in certain applications. Apart from the inconvenience of laying six wires, the voltage reflections in the wires can lead to over voltages at the motor terminals, causing insulation failures. Where as the topology presented in chapter-2 of this thesis uses open-end winding motor with flying-capacitor inverters for the generation of dodecagonal space-vectors, the topology presented in chapter-3 utilizes a cascade connection of flying-capacitors and floating H-bridge cells to generate the same set of voltage space-vectors, thus allowing any standard induction motor as the load. Of the methods used for the speed control of induction motors, namely sine-triangle PWM and space vector PWM, the latter that provides extra modulation range is naturally preferred. It is a well-understood fact that the way in which the PWM switching sequences are applied has a significant influence on the harmonic performance of the drive. However, this topic has not been addressed properly for dodecagonal voltage space-vector based multilevel inverter drives. In chapter-4 of the thesis, this aspect is taken into ac-count and the notion of “harmonic flux trajectories” and “stator flux ripple” are used to analyze the harmonic performance of the various PWM switching schemes. Although the PWM method used in this study is similar to that in chapter-2, the modification in the PWM switching sequence in the PWM algorithm yields significant improvements in harmonic performance. The proposed topologies and PWM schemes are extensively simulated and experimentally verified. The control scheme was implemented using a DSP processor running at a clock frequency 150MHz and a four-pole, 3.7kW, 50Hz, 415V three-phase induction motor was used as the load. Since the PWM ports are limited in a DSP, a field-programmable gate array (FPGA) was used to decode the PWM signals from the DSP to generate timing information required for PWM sequencing for all the power devices. The same FPGA was used to generate the dead-time signals for the power devices also.
4

Multilevel Dodecagonal and Octadecagonal Voltage Space Vector Structures with a Single DC Supply Using Basic Inverter Cells

Boby, Mathews January 2017 (has links) (PDF)
Multilevel converters have become the direct accepted solution for high power converter applications. They are used in wide variety of power electronic applications like power transmission and distribution, electric motor drives, battery management and renewable energy management to name a few. For medium and high voltage motor drives, especially induction motor drives, the use of multilevel voltage source inverters have become indispensible. A high voltage multilevel inverter could be realized using low voltage switching devices which are easily available and are of low cost. A multilevel inverter generates voltage waveforms of very low harmonic distortion by switching between voltage levels of reasonably small amplitude differences. Thus the dv/dt of the output voltage waveform is small and hence the electromagnetic interference generated is less. Because of better quality output generation, the switching frequency of the multilevel inverters could be reduced to control the losses. Thus, a multilevel converter stands definitely a class apart in terms of performance from a conventional two-level inverter. Many multilevel inverter topologies for induction motor drives are available in the literature. The basic multilevel topologies are the neutral point clamped (NPC) inverter, flying capacitor (FC) inverter and the cascaded H-bridge (CHB) inverter. Various other hybrid multilevel topologies have been proposed by using the basic multilevel inverter topologies. It is also possible to obtain multilevel output by using conventional two-level inverters feeding an open-end winding induction motor from both sides. All the conventional multilevel voltage source inverters generate hexagonal (6 sided polygons) voltage space vector structures. When an inverter with hexagonal space vector structure is operated in the over modulation range, significant low order harmonics are generated in the phase voltage output. Over modulation operation is required for the full utilization of the available DC-link voltage and hence maximum power generation. Among the harmonics generated, the fifth and seventh harmonics are of significant magnitudes. These harmonics generate torque ripple in the motor output and are undesirable in high performance motor drive applications. The presence of these harmonics further creates problems in the closed loop current control of a motor, affecting the dynamic performance. Again, the harmonic currents generate losses in the stator windings. Therefore, in short, the presence of harmonic voltages in the inverter output is undesirable. Many methods have been proposed to eliminate or mitigate the effect of the harmonics. One solution is to operate the inverter at high switching frequency and thereby push the harmonics generated to high frequencies. The stator leakage inductance offers high impedance to the high frequency harmonics and thus the harmonic currents generated are negligible. But, high switching frequency brings switching losses and high electromagnetic interference generation in the drive system. And also, high switching frequency operation is effective only in the linear modulation range. Another solution is to use passive harmonic filters at the inverter output. For low order harmonics, the filter components would be bulky and costly. The loss created by the filters degrades the efficiency of the drive system as well. The presence of a filter also affects the dynamic performance of the drive system during closed loop operation. Special pulse width modulation (PWM) techniques like selective harmonic elimination (SHE) PWM can prevent the generation of a particular harmonic from the phase voltage output. The disadvantages of such schemes are limited modulation index, poor dynamic performance and extensive offline computations. An elegant harmonic elimination method is to generate a voltage space vector structure having more number of sides like a dodecagon (12 sided polygons) or an octadecagon (18 sided polygons) rather than a hexagon. Inverter topologies generating dodecagonal voltage space vector structure eliminate fifth and seventh order harmonics, represented as 6n 1; n = odd harmonics, from the phase voltages and hence from the motor phase currents, throughout the entire modulation range. The first harmonics appearing the phase voltage are the 11th and 13th harmonics. Another advantage is the increased linear modulation range of operation for a given DC-link voltage, because geometrically dodecagon is closer to circle than a hexagon. An octadecagonal structure eliminates the 11th and 13th harmonics as well from the phase voltage output. The harmonics present in the phase voltage are of the order 18n 1; n = 1; 2; 3; :::. Thus the total harmonics distortion (THD) of the phase voltage is further improved. The linear modulation range also gets enhanced compared to hexagonal and dodecagonal structures. Multilevel dodecagonal and octadecagonal space vector structures combines the advantages of both multilevel structure and dodecagonal and octadecagonal structure and hence are very attractive solutions for high performance induction motor drive schemes. Chapter 1 of this thesis introduces the multilevel in-verter topologies generating hexagonal, dodecagonal and octadecagonal voltage space vector structures. Inverter topologies generating multilevel dodecagonal and octadecago-nal voltage space vector structures have been proposed before but using multiple DC sources delivering active power. The presence of more than one DC source in the inverter topology makes the back to back operation (four-quadrant operation) of the drive system difficult. And also the drive system becomes more costly and bulky. This thesis proposes induction motor drive schemes generating multilevel dodecagonal and octadecagonal volt-age space vector structures using a single DC source. In Chapter 2, an induction motor drive scheme generating a six-concentric multilevel dodecagonal voltage space vector structure using a single DC source is proposed for an open-end winding induction motor. In the topology, two three-level inverters drive an open-end winding IM, one inverter from each side. DC-link of primary inverter is from a DC source (Vdc) which delivers the entire active power, whereas the secondary inverter DC-link is maintained by a capacitor at a voltage of 0:289Vdc, which is self-balanced during the inverter operation. The PWM scheme implemented ensures low switching frequency for primary inverter. Secondary inverter operates at a small DC-link voltage. Hence, switching losses are small for both primary and secondary inverters. An open-loop V/f scheme was used to test the topology and modulation scheme. In the work proposed in Chapter 3, the topology and modulation scheme used in the first work is modified for a star connected induction motor. Again, the scheme uses only a single DC source and generates a six-concentric multilevel space vector struc-ture. The power circuit topology is realized using a three-level flying capacitor (FC) inverter cascaded with an H-bridge (CHB). The capacitors in the CHB inverter are maintained at a voltage level of 0:1445Vdc. The FC inverter switches between volt-age levels of [Vdc; 0:5Vdc; 0] and the CHB inverter switches between voltage levels of [+01445Vdc; 0; 0:1445Vdc]. The PWM scheme generates a quasi-square waveform output from the FC inverter. This results in very few switchings of the FC inverter in a funda-mental cycle and hence the switching losses are controlled. The CHB inverter switches Ch. 0: at high frequency compared to the FC inverter and cancels the low order harmonics (6n 1; n = odd) generated by the FC inverter. Even though the CHB operates at higher switching frequency, the switchings are at low voltage thereby controlling the losses. The linear modulation range of operation is extended to 48:8Hz for a base frequency of 50Hz. An open-loop V/f scheme was used to test the topology and modulation scheme. In Chapter 4, a nine-concentric multilevel octadecagonal space vector structure is proposed for the first time, again using a single DC source. The circuit topology remains same as the work in Chapter 3, except that the CHB capacitor voltage is maintained at 0:1895Vdc. The 5th; 7th; 11th and 13th harmonics are eliminated from the phase voltage output. The linear modulation range is enhanced to 49:5Hz for a base speed of 50Hz. An open-loop V/f scheme and rotor field oriented control scheme were used to test the proposed drive system. All the proposed drive schemes have been extensively simulated and tested in hard-ware. Simulation was performed in MATLAB-SIMULINK environment. For implement-ing the inverter topology, SKM75GB12T4 IGBT modules were used. The control al-gorithms were implemented using a DSP (TI’s TMS320F28334) and an FPGA (Xilinx Spartan XC3S200). A 1kW , 415V , 4-pole induction motor was used for the experiment purpose. The above mentioned induction motor drive schemes generate phase voltage outputs in which the low order harmonics are absent. The linear modulation range is extended near to the base frequency of operation compared to hexagonal space vector structure. In the inverter topologies, the secondary inverters or the CHB inverters functions as harmonic filters and delivers zero active power. The primary inverter in the topologies switches at low frequency, reducing the power loss. Single DC source requirement brings down the cost of the system as well as permitting easy four-quadrant operation. This is also advantageous in battery operated systems like EV applications. With these features and advantages, the proposed drive schemes are suitable for high performance, medium voltage induction motor drive applications.

Page generated in 0.0656 seconds