• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 38
  • 9
  • 4
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 68
  • 68
  • 68
  • 23
  • 20
  • 13
  • 12
  • 10
  • 10
  • 9
  • 9
  • 9
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Fundamentals of Knock

Iqbal, Asim 27 June 2012 (has links)
No description available.
42

A critical study of various types of exhaust gas analyzers for gasoline engines

Dilworth, John L. 07 February 2013 (has links)
It is quite common practice in automotive and aircraft engine maintenance, operation, and research to employ any one of several types of instruments now on the market for determining the air-fuel ratio by exhaust gas analysis. It was the purpose of this investigation to determine the most important operating characteristics, especially range and accuracy, of each of these types of instruments. The theory underlying the operation of this kind of apparatus was studied critically, and certain tests were performed on representative makes in order to observe the operation of each type under service conditions. These tests consisted essentially of connecting the analyzers to the exhaust pipe of a single-cylinder engine and comparing the analyazer readings with the true air-fuel ratio determined by accurately measuring the air and fuel supplied to the engine while the instruments were being observed. This procedure was repeated for a number of different carburetor settings, all other factors being kept as nearly constant as possible during a given series of runs. The effect of variations in engine spark advance and the pressure of the gas supplied to the instruments was also investigated. The test revealed several interesting facts. Study of the operating principles of the several instruments indicated that they were limited te air fue1 ratios below about 14 to 1, and this has been conclusively proved by these experiments. This limitation applies to thermal conductivity, hot-wire catalytic, and relative density types. W While the most expensive makes of instruments were not tested, it was found that, in general, the limit of accuracy is not greater than one-half of one air-fue1 ratio, regardless of the operating principle employed. Large variations in the pressure and rate of flow of the exhaust supplied to the analyzers were found to cause considerable deviations in those instruments which did not employ some kind of device to insure a steady and uniform supply. Certain features of design and construction which effect the reliability of the various types of exhaust gas analyzers are also reviewed in this thesis, and some of the more important chemical methods of analysis are treated briefly. / Master of Science
43

Catalytic control of individual hydrocarbons from a small utility gasoline engine

Giavis, Konstantinos C. 29 September 2009 (has links)
Recent approval of emission standards for small utility engines by the California Air Resources Board suggested that substantial reductions in emissions from small utility engines will soon be required. Although the 1994 standards can be met by simple engine modifications, the 1999 standards may require the use of emission control technologies such as catalytic converters because they are more stringent. In this research catalytic control of individual hydrocarbons such as methane, ethylene, benzene, and toluene were evaluated. A platinum coated catalyst treated emissions from a 107cc, four-cycle gasoline engine loaded with a 1.4KW portable generator. Determination of emissions was performed at three different load levels: 0%, 50% and 92% of the engine rated load. Among the four hydrocarbons, toluene was oxidized as much as 60%, and benzene 40%, whereas ethylene remained unaffected by the catalyst. Also, a 5% to 10% methane oxidation occurred in one trial. / Master of Science
44

The effect of compression ratio on emissions from an alcohol-fueled engine

Cambridge, Shevonn Nathaniel 12 September 2009 (has links)
The motivation for this work stems from the enacting of stricter emissions requirements for the mid 1990's by the California Air Resources Board. It is foreseen that these requirements will favor the use of alcohol fuels in quantities comparable to the present usage of gasoline and diesel in order to reduce emissions of carbon monoxides (CO) and nitrogen oxides (NOx). The use of alcohol fuels at this level will substantially increase the amount of aldehyde emissions. This poses a problem in that aldehydes are odorants, components of photochemical smog, and volatile aldehydes are eye and respiratory tract irritants; therefore, it is only a matter of time before they too are strictly regulated. This thesis focuses on a systematic analysis of aldehyde emissions from alcohol fuels with respect to compression ratio. Compression ratio has been selected as the primary variable for this study, because alcohol-fueled vehicles are usually modified to have higher compression ratios than their gasoline-fueled counterparts in order to take advantage of alcohols' higher octane rating. The investigation is being conducted using a single-cylinder variable-compression ratio Waukesha-CFR engine. The aldehyde emissions are measured for various fuel alcohol percentages at different compression ratios and MBT timing. The effects on conventional vehicle emissions (Le. NOx, CO, unburned hydrocarbons) are also being measured so that tradeoffs between conventional emissions and aldehyde emissions can be determined. The goal of this research was to locate any trends between alcohol fuels and compression ratios which will allow for an optimization of these parameters to minimize aldehyde emissions. It was desired that this be achieved without sacrificing engine performance or increasing other regulated emissions. The variance of compression ratio was found to affect the pollutant formation process via its effects on temperature. The increasing expansion ratio, which accompanies increasing compression ratio, resulted in lower post .. expansion burned-gas temperatures. Temperature's influence on the rate of reactions was found to be the driving force in the formation of most of the pollutants. The experiment showed a definitive reduction in CO emissions with the use of alcohol fuels. The results also indicated an inherent tradeoff between NOx and formaldehyde emissions. / Master of Science
45

Development of combustion models for RANS and LES applications in SI engines

Ranasinghe, Chathura P. January 2013 (has links)
Prediction of flow and combustion in IC engines remains a challenging task. Traditional Reynolds Averaged Navier Stokes (RANS) methods and emerging Large Eddy Simulation (LES) techniques are being used as reliable mathematical tools for such predictions. However, RANS models have to be further refined to make them more predictive by eliminating or reducing the requirement for application based fine tuning. LES holds a great potential for more accurate predictions in engine related unsteady combustion and associated cycle-tocycle variations. Accordingly, in the present work, new advanced CFD based flow models were developed and validated for RANS and LES modelling of turbulent premixed combustion in SI engines. In the research undertaken for RANS modelling, theoretical and experimental based modifications have been investigated, such that the Bray-Moss-Libby (BML) model can be applied to wall-bounded combustion modelling, eliminating its inherent wall flame acceleration problem. Estimation of integral length scale of turbulence has been made dynamic providing allowances for spatial inhomogeneity of turbulence. A new dynamic formulation has been proposed to evaluate the mean flame wrinkling scale based on the Kolmogorov Pertovsky Piskunow (KPP) analysis and fractal geometry. In addition, a novel empirical correlation to quantify the quenching rates in the influenced zone of the quenching region near solid boundaries has been derived based on experimentally estimated flame image data. Moreover, to model the spark ignition and early stage of flame kernel formation, an improved version of the Discrete Particle Ignition Kernel (DPIK) model was developed, accounting for local bulk flow convection effects. These models were first verified against published benchmark test cases. Subsequently, full cycle combustion in a Ricardo E6 engine for different operating conditions was simulated. An experimental programme was conducted to obtain engine data and operating conditions of the Ricardo E6 engine and the formulated model was validated using the obtained experimental data. Results show that, the present improvements have been successful in eliminating the wall flame acceleration problem, while accurately predicting the in-cylinder pressure rise and flame propagation characteristics throughout the combustion period. In the LES work carried out in this research, the KIVA-4 RANS code was modified to incorporate the LES capability. Various turbulence models were implemented and validated in engine applications. The flame surface density approach was implemented to model the combustion process. A new ignition and flame kernel formation model was also developed to simulate the early stage of flame propagation in the context of LES. A dynamic procedure was formulated, where all model coefficients were locally evaluated using the resolved and test filtered flow properties during the fully turbulent phase of combustion. A test filtering technique was adopted to use in wall bounded systems. The developed methodology was then applied to simulate the combustion and associated unsteady effects in Ricardo E6 spark ignition engine at different operating conditions. Results show that, present LES model has been able to resolve the evolution of a large number of in-cylinder flow structures, which are more influential for engine performance. Predicted heat release rates, flame propagation characteristics, in-cylinder pressure rise and their cyclic variations are also in good agreement with measurements.
46

Exploring the limits of hydrogen assisted jet ignition

Hamori, Ferenc Unknown Date (has links) (PDF)
Homogeneously charged spark ignition (SI) engines are unable to stabilise the combustion in ultra lean mixtures, therefore they operate with a near stoichiometric air-fuel ratio (AFR) at all load points. This produces high engine out NOx and CO emissions with a compromise on fuel consumption. Moreover, stoichiometric operation is needed for effective operation of a three way catalyst, which is not adequate to meet future fuel consumption targets. (For complete abstract open document)
47

Potentiel de l’utilisation des mélanges hydrocarbures/alcools pour les moteurs à allumage commandé / Potential of hydrocarbons/alcohols blends use in spark-ignition engines

Broustail, Guillaume 14 December 2011 (has links)
Depuis plusieurs années, la diminution des réserves de pétrole incite les différents pays à accroitre leur indépendance énergétique. De plus, diminuer l’impact environnemental de la voiture est devenu l’une des priorités de notre société. En ce sens, les normes Européennes anti-pollution sont devenues plus strictes, tandis que certains polluants sont pointés du doigt pour avoir un impact néfaste sur la santé et l’environnement. Pour répondre à cette double problématique, l’utilisation de biocarburants de type alcools dans les moteurs à allumage commandé est l’une des voies envisagées. Ce virage a déjà été entrepris à petite échelle par l’Union Européenne qui a tout d’abord autorisé l’ajout de 5%, puis de 10% d’éthanol dans l’essence. En plus de l’éthanol déjà commercialisé, le Biobutanol, biocarburant de seconde génération, apparait comme un candidat à fort potentiel pour une utilisation dans les moteurs à allumage commandé. L’objectif de ce travail de thèse est d’étudier le potentiel de l’utilisation de mélanges isooctane/butanol dans les moteurs à allumage commandé, en termes de performances et d’émissions polluantes. De plus, ces résultats sont comparés à ceux de mélanges isooctane/éthanol. Le dégagement de chaleur dans un moteur à allumage commandé est en partie piloté par la vitesse de combustion laminaire. Cette caractéristique a été étudiée de manière expérimentale et numérique pour différentes conditions initiales (pression et richesse) dans une enceinte à volume constant. Puis, une étude sur les premières étapes de la propagation de la combustion a été réalisée dans un moteur monocylindre à accès optique. Ces résultats en moteur ont été corrélés avec les informations laminaires. Enfin, les émissions de polluants réglementés et non-réglementés, ainsi que les performances ont été étudiées dans un moteur monocylindre à allumage commandé. Une baisse de la plupart de ces émissions a été observée avec l’ajout des deux alcools. / For the past few years, the oil stock decrease encourages the different countries to increase their energy independence. Moreover, reducing the environmental impact of transportation became one of the priorities of our society. In this way, European emissions standards are stricter while several pollutants have been identified to have a negative impact on health and the environment. To answer this double problem, the use of alcohols biofuels in spark-ignition engines is one the promising ways. The European Union have already taken a small step in that direction by allowing a maximum of 10% of ethanol into gasoline. As well as ethanol is already marketed, Biobutanol, a 2nd generation biofuel, appears as a serious candidate with a strong potential for a spark-ignition engines use. The objective of this dissertation is to study the potential of the iso-octane/butanol blends use in spark-ignition engines, in terms of performance and pollutants emissions. Moreover, these results are compared to isooctane/ethanol blends. The heat release in spark-ignition engine is piloted for a part by laminar burning velocity. This characteristic was studied experimentally and numerically for different initial conditions (pressure and equivalence ratio) in a constant volume bomb. Then, the early flame kernel growth was studied in a spark-ignition single cylinder engine equipped with optical accesses. Those results were correlated with the results on the laminar burning velocity. Finally, regulated and non-regulated pollutants emissions and engine performance were investigated in a spark-ignition single cylinder engine. A decrease of most pollutant emissions was observed with both alcohols addition.
48

Análise e simulação de mapas base de injeção eletrônica de combustível para motores de ignição a centelha

Andreoli, Alexandre Giordani January 2012 (has links)
Uma nova metodologia para a criação de mapas base de injeção eletrônica de combustível para motores de combustão interna de ignição a centelha é apresentada e seu comportamento é comparado com os resultados fornecidos pela metodologia MVEM. A partir da utilização de equacionamentos da literatura, é feita uma modelagem do ciclo ideal Otto para um motor genérico alternativo monocilíndrico de 500 cm³ de volume deslocado. É modelada também uma válvula do tipo borboleta genérica de 0,06 m³ de diâmetro que opera tanto em regime subsônico quanto sônico. A pressão à jusante da borboleta é calculada para aberturas de 5° a 88,64°. Os modelos são acoplados a partir da vazão mássica de ar admitida, que é o parâmetro principal, sendo programados e simulados usando o programa comercial EES. O mapa base de pressão por abertura de borboleta por rotação resultante mostra o detalhe de descontinuidade pelo uso das equações de vazão mássica juntamente com a imposta pelas equações de coeficiente de descarga, implicando na mudança brusca de valores de pressão calculados para a região de abertura menor que 20%. O mapa de vazão mássica de combustível por rotação e por abertura de borboleta para uma razão estequiométrica de 14,67 também é gerado. Nele é possível observar a demanda por vazão mássica de combustível para cada rotação e abertura da válvula borboleta mostrando o caminho a ser seguido pelo motor para que seja atingida a vazão mássica necessária para obter-se a relação ar/combustível desejada. A metodologia proposta gera mapas base de combustível para módulos de injeção eletrônica. Os resultados são apresentados na forma de gráficos. O modelo produz resultados satisfatórios, reproduzindo o comportamento da válvula borboleta, comparado com a literatura. / A new methodology for EMS base maps to the internal combustion spark ignition engines is presented. Its behavior is compared with results from the MVEM methodology. From the technical literature an ideal Otto cycle for a generic reciprocating single cylinder engine with 500 cm³ of displaced volume. Also, throttle valve with a diameter of 0.06 m of diameter operating in subsonic and sonic flow regime is modeled. The downstream pressure is calculated for throttle openings of 5° to 88.64°. The models are coupled using the engine air mass flow rate as the main parameter, being programmed and simulated using a commercial EES software. The base map of pressure versus throttle opening and engine speed shows the discontinuity detail imposed from the mass flow and discharge coefficient equations, resulting into a abrupt change of pressure values calculated for an opening region less than 20%. The fuel mass flow versus revolutions per minute versus throttle valve opening for stoichiometric air fuel ratio of 14.67 is also generated. In such map it is possible to show the fuel mass flow demand for each rotation and throttle opening showing the path to be followed by the engine to reach the mass air flow needed to reach the target air fuel ratio. This methodology generates base fuel maps for electronic fuel injection modules. The results are presented in graph forms. The model presents satisfactory results that reproduce the throttle valve behavior, compared to the literature.
49

Análise e simulação de mapas base de injeção eletrônica de combustível para motores de ignição a centelha

Andreoli, Alexandre Giordani January 2012 (has links)
Uma nova metodologia para a criação de mapas base de injeção eletrônica de combustível para motores de combustão interna de ignição a centelha é apresentada e seu comportamento é comparado com os resultados fornecidos pela metodologia MVEM. A partir da utilização de equacionamentos da literatura, é feita uma modelagem do ciclo ideal Otto para um motor genérico alternativo monocilíndrico de 500 cm³ de volume deslocado. É modelada também uma válvula do tipo borboleta genérica de 0,06 m³ de diâmetro que opera tanto em regime subsônico quanto sônico. A pressão à jusante da borboleta é calculada para aberturas de 5° a 88,64°. Os modelos são acoplados a partir da vazão mássica de ar admitida, que é o parâmetro principal, sendo programados e simulados usando o programa comercial EES. O mapa base de pressão por abertura de borboleta por rotação resultante mostra o detalhe de descontinuidade pelo uso das equações de vazão mássica juntamente com a imposta pelas equações de coeficiente de descarga, implicando na mudança brusca de valores de pressão calculados para a região de abertura menor que 20%. O mapa de vazão mássica de combustível por rotação e por abertura de borboleta para uma razão estequiométrica de 14,67 também é gerado. Nele é possível observar a demanda por vazão mássica de combustível para cada rotação e abertura da válvula borboleta mostrando o caminho a ser seguido pelo motor para que seja atingida a vazão mássica necessária para obter-se a relação ar/combustível desejada. A metodologia proposta gera mapas base de combustível para módulos de injeção eletrônica. Os resultados são apresentados na forma de gráficos. O modelo produz resultados satisfatórios, reproduzindo o comportamento da válvula borboleta, comparado com a literatura. / A new methodology for EMS base maps to the internal combustion spark ignition engines is presented. Its behavior is compared with results from the MVEM methodology. From the technical literature an ideal Otto cycle for a generic reciprocating single cylinder engine with 500 cm³ of displaced volume. Also, throttle valve with a diameter of 0.06 m of diameter operating in subsonic and sonic flow regime is modeled. The downstream pressure is calculated for throttle openings of 5° to 88.64°. The models are coupled using the engine air mass flow rate as the main parameter, being programmed and simulated using a commercial EES software. The base map of pressure versus throttle opening and engine speed shows the discontinuity detail imposed from the mass flow and discharge coefficient equations, resulting into a abrupt change of pressure values calculated for an opening region less than 20%. The fuel mass flow versus revolutions per minute versus throttle valve opening for stoichiometric air fuel ratio of 14.67 is also generated. In such map it is possible to show the fuel mass flow demand for each rotation and throttle opening showing the path to be followed by the engine to reach the mass air flow needed to reach the target air fuel ratio. This methodology generates base fuel maps for electronic fuel injection modules. The results are presented in graph forms. The model presents satisfactory results that reproduce the throttle valve behavior, compared to the literature.
50

Análise e simulação de mapas base de injeção eletrônica de combustível para motores de ignição a centelha

Andreoli, Alexandre Giordani January 2012 (has links)
Uma nova metodologia para a criação de mapas base de injeção eletrônica de combustível para motores de combustão interna de ignição a centelha é apresentada e seu comportamento é comparado com os resultados fornecidos pela metodologia MVEM. A partir da utilização de equacionamentos da literatura, é feita uma modelagem do ciclo ideal Otto para um motor genérico alternativo monocilíndrico de 500 cm³ de volume deslocado. É modelada também uma válvula do tipo borboleta genérica de 0,06 m³ de diâmetro que opera tanto em regime subsônico quanto sônico. A pressão à jusante da borboleta é calculada para aberturas de 5° a 88,64°. Os modelos são acoplados a partir da vazão mássica de ar admitida, que é o parâmetro principal, sendo programados e simulados usando o programa comercial EES. O mapa base de pressão por abertura de borboleta por rotação resultante mostra o detalhe de descontinuidade pelo uso das equações de vazão mássica juntamente com a imposta pelas equações de coeficiente de descarga, implicando na mudança brusca de valores de pressão calculados para a região de abertura menor que 20%. O mapa de vazão mássica de combustível por rotação e por abertura de borboleta para uma razão estequiométrica de 14,67 também é gerado. Nele é possível observar a demanda por vazão mássica de combustível para cada rotação e abertura da válvula borboleta mostrando o caminho a ser seguido pelo motor para que seja atingida a vazão mássica necessária para obter-se a relação ar/combustível desejada. A metodologia proposta gera mapas base de combustível para módulos de injeção eletrônica. Os resultados são apresentados na forma de gráficos. O modelo produz resultados satisfatórios, reproduzindo o comportamento da válvula borboleta, comparado com a literatura. / A new methodology for EMS base maps to the internal combustion spark ignition engines is presented. Its behavior is compared with results from the MVEM methodology. From the technical literature an ideal Otto cycle for a generic reciprocating single cylinder engine with 500 cm³ of displaced volume. Also, throttle valve with a diameter of 0.06 m of diameter operating in subsonic and sonic flow regime is modeled. The downstream pressure is calculated for throttle openings of 5° to 88.64°. The models are coupled using the engine air mass flow rate as the main parameter, being programmed and simulated using a commercial EES software. The base map of pressure versus throttle opening and engine speed shows the discontinuity detail imposed from the mass flow and discharge coefficient equations, resulting into a abrupt change of pressure values calculated for an opening region less than 20%. The fuel mass flow versus revolutions per minute versus throttle valve opening for stoichiometric air fuel ratio of 14.67 is also generated. In such map it is possible to show the fuel mass flow demand for each rotation and throttle opening showing the path to be followed by the engine to reach the mass air flow needed to reach the target air fuel ratio. This methodology generates base fuel maps for electronic fuel injection modules. The results are presented in graph forms. The model presents satisfactory results that reproduce the throttle valve behavior, compared to the literature.

Page generated in 0.0884 seconds