• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 45
  • 18
  • 8
  • 8
  • 6
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 109
  • 109
  • 80
  • 18
  • 18
  • 17
  • 14
  • 13
  • 13
  • 13
  • 12
  • 12
  • 12
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Obtenção de reatividade subcrítica por meio de medidas de APSD e CPSD utilizando detectores modo pulso no reator IPEN/MB-01 / Obtainment of subcritical reactivity by mean of measurement of APSD and CPSD employing pulse mode detectors in the IPEN/MB-01 reactor

LEE, SEUNG M. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:42:36Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:02:07Z (GMT). No. of bitstreams: 0 / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / Tese (Doutorado em Tecnologia Nuclear) / IPEN/T / Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP / FAPESP:09/54838-0
62

A physics-based statistical random telegraph noise model / Um modelo estatistico e fisicamente baseado para o minimo RTN

Silva, Maurício Banaszeski da January 2016 (has links)
O Ruído de Baixa Frequência (LFN), tais como o ruído flicker e o Random Telegraph Noise (RTN), são limitadores de performance em muitos circuitos analógicos e digitais. Para transistores diminutos, a densidade espectral de potência do ruído pode variar muitas ordens de grandeza, impondo uma séria limitação na performance do circuito e também em sua confiabilidade. Nesta tese, nós propomos um novo modelo de RTN estatístico para descrever o ruído de baixa frequência em MOSFETs. Utilizando o modelo proposto, pode-se explicar e calcular o valor esperado e a variabilidade do ruído em função das polarizações, geometrias e dos parâmetros físicos do transistor. O modelo é validado através de inúmeros resultados experimentais para dispositivos com canais tipo n e p, e para diferentes tecnologias CMOS. É demonstrado que a estatística do ruído LFN dos dispositivos de canal tipo n e p podem ser descritos através do mesmo mecanismo. Através dos nossos resultados e do nosso modelo, nós mostramos que a densidade de armadilhas dos transistores de canal tipo p é fortemente dependente do nível de Fermi, enquanto para o transistor de tipo n a densidade de armadilhas pode ser considerada constante na energia. Também é mostrado e explicado, através do nosso modelo, o impacto do implante de halo nas estatísticas do ruído. Utilizando o modelo demonstra-se porque a variabilidade, denotado por σ[log(SId)], do RTN/LFN não segue uma dependência 1/√área; e fica demonstrado que o ruído, e sua variabilidade, encontrado em nossas medidas pode ser modelado utilizando parâmetros físicos. Além disso, o modelo proposto pode ser utilizado para calcular o percentil do ruído, o qual pode ser utilizado para prever ou alcançar certo rendimento do circuito. / Low Frequency Noise (LFN) and Random Telegraph Noise (RTN) are performance limiters in many analog and digital circuits. For small area devices, the noise power spectral density can easily vary by many orders of magnitude, imposing serious threat on circuit performance and possibly reliability. In this thesis, we propose a new RTN model to describe the statistics of the low frequency noise in MOSFETs. Using the proposed model, we can explain and calculate the Expected value and Variability of the noise as function of devices’ biases, geometry and physical parameters. The model is validated through numerous experimental results for n-channel and p-channel devices from different CMOS technology nodes. We show that the LFN statistics of n-channel and p-channel MOSFETs can be described by the same mechanism. From our results and model, we show that the trap density of the p-channel device is a strongly varying function of the Fermi level, whereas for the n-channel the trap density can be considered constant. We also show and explain, using the proposed model, the impact of the halo-implanted regions on the statistics of the noise. Using this model, we clarify why the variability, denoted by σ[log(SId)], of RTN/LFN doesn't follow a 1/√area dependence; and we demonstrate that the noise, and its variability, found in our measurements can be modeled using reasonable physical quantities. Moreover, the proposed model can be used to calculate the percentile quantity of the noise, which can be used to predict or to achieve certain circuit yield.
63

Obtenção de reatividade subcrítica por meio de medidas de APSD e CPSD utilizando detectores modo pulso no reator IPEN/MB-01 / Obtainment of subcritical reactivity by mean of measurement of APSD and CPSD employing pulse mode detectors in the IPEN/MB-01 reactor

LEE, SEUNG M. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:42:36Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:02:07Z (GMT). No. of bitstreams: 0 / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / Este trabalho apresenta uma nova abordagem experimental para determinar a reatividade de sistemas subcríticos. O método a ser apresentado utiliza o modelo da cinética subcrítica desenvolvido por Gandini e Salvatores e baseia-se apenas em grandezas medidas, tais como a taxa de contagem no detector, e nos parâmetros que surgem do ajuste dos mínimos quadrados APSD (Auto Power Spectral Density) e CPSD (Cross Power Spectral Density), não sendo necessário lidar com as quantidades de maior complexidade como a eficiência de detector. A única hipótese feita neste método foi que a fração efetiva de nêutrons atrasados e o tempo de geração de nêutrons prontos fossem independentes do nível de subcriticalidade do sistema. O método proposto foi aplicado nas medidas de reatividade de várias configurações subcríticas do reator IPEN/MB-01. Foram realizadas medidas da APSD e CPSD em diversos graus de subcriticalidade (até em torno de -7000 pcm). Nos dados das densidades espectrais foram feitos ajustes por meio do método de mínimos quadrados para obter a constante de decaimento pronto (α) e outras grandezas. Com a finalide de melhorar as estatísticas de contagem de nêutrons, fonte externa de nêutrons de Am-Be foi instalada próximo ao núcleo, além da fonte de partida. O método experimental proposto mostra claramente que, a teoria da cinética pontual clássica não descreve a reatividade medida. Em vez disso, a reatividade inferida a partir do modelo da cinética pontual clássica é próxima, em seus valores absolutos, ao índice de subcriticalidade (ζ) para um determinado arranjo das fontes do experimeno. A concordância dos resultados obtidos por MCNP5 e GPT-TORT, ambos utilizando os dados nucleares da biblioteca ENDF/B-VII.0, com os resultados experimentais correspondentes são de boa qualidade. / Tese (Doutorado em Tecnologia Nuclear) / IPEN/T / Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP / FAPESP:09/54838-0
64

Improved Wideband Spectrum Sensing Methods for Cognitive Radio

Miar, Yasin January 2012 (has links)
Abstract Cognitive Radio (CR) improves the efficiency of spectrum utilization by allowing non- licensed users to utilize bands when not occupied by licensed users. In this thesis, we address several challenges currently limiting the wide use of cognitive radios. These challenges include identification of unoccupied bands, energy consumption and other technical challenges. Improved accuracy edge detection techniques are developed for CR to mitigate both noise and estimation error variance effects. Next, a reduced complexity Simplified DFT (SDFT) is proposed for use in CR. Then, a sub-Nyquist rate A to D converter is introduced to reduce energy consumption. Finally, a novel multi-resolution PSD estimation based on expectation-maximization algorithm is introduced that can obtain a more accurate PSD within a specified sensing time.
65

Development of a Software Tool for Mid-Spatial Frequency Analysis

Eriksson, Albert January 2021 (has links)
The manufacturing of optical components, such as lenses or mirrors, consists of numeroussteps that are essential to the performance of the fnished optical system, such as the specifcation ofthe optical surface. For a longer period, the main focus has been in identifying and restricting thenegative effects of the low and high spatial frequency content of the surface. However, as technologyand optical equipment has become more advanced, the effects of the mid-spatial frequencies havebeen studied more, and continue to be a topic of research. As of now, there is still a need for methodsthat accurately predict and analyse the regime of mid-spatial frequencies, such that they can becontrolled during the specifcation phase, successfully limiting the need of post-processing steps.This work introduces a software tool, specifcally designed to approach this problem, which wasto be developed in Python as a contribution to the existing Optical Scripting Library at OHB. Byspecifying an optical component in terms of a Power Spectral Density function, together with thecontributions from different spatial frequency domains and the application of a ripple patterns, thissoftware tool can generate pseudo-random optical surfaces, which maintains the input specifcations.Furthermore, a Dynamic Link Library fle was developed, sharing the same functionality as thePython implementation, allowing for simulations using Zemax OpticStudio. Using the software tool,it was found that the relative error between input and output measurements were approximately0.78%, in terms of the Power Spectral Density Function. In addition, the result of analysing one of thetwo test cases indicate that the software tool is effective in predicting the infuence of mid-spatialfrequency errors, fulflling a previously measured predicition. The second test case proved that thesoftware tool can be used for mimicing surfaces of real measurements, holding the same specifcations.
66

Měření větrových oscilačních vln na nádrži / Measurement of wind oscilatory waves on reservoir

Kotaška, Stanislav January 2019 (has links)
This diploma thesis deals with the measurement of wind oscillation waves on reservoirs, especially with regard to the determination of wave properties with a focus on the spectral density. The thesis presents the basics of the theory of creation and propagation of wind oscillation waves, the recherche of measuring devices and a description of the pilot measurement with the processing of measured data in the MATLAB environment using the software tool WAFO. Attached to the CD are sample scripts for data processing from the resistance sensor.
67

Měření a vyhodnocení vlnových událostí na laguně Hulín / Measurement and evaluation of wave events at Hulín lake

Skřečková, Kateřina Unknown Date (has links)
The aim of this thesis is to process data on wave event measurement on hulín lagoon and their evaluation. The data is processed in the MATLAB environment, thanks to which basic parameters such as wave heights and lengths, period and spectrum shape can be evaluated.
68

Design of Structural Stand for High-Precision Optics Microscopy

Novell, Sara T 01 June 2020 (has links)
Lawrence Livermore National Lab (LLNL) is home to the National Ignition Facility (NIF), the world’s largest and most energetic laser. Each of the 192 beamlines contains dozens of large optics, which require offline damage inspection using large, raster-scanning microscopes. The primary microscope used to measure and characterize the optical damage sites has a precision level of 1 µm. Mounted in a class 100 clean room with a raised tile floor, the microscope is supported by a steel stand that structurally connects the microscope to the concrete ground. Due to ambient vibrations experienced in the system, the microscope is only able to reliably reach a 10-µm level of precision. As NIF’s technology advances, there is a need to both increase optic measurement throughput and to measure damage sites at a higher level of precision. As a result, there is to be another microscope mounted into another clean room lab at LLNL. To assure the microscope can meet its specified level of precision, the stand on which it is mounted was designed to meet the rigorous Environmental Vibrational Criteria standards, or VC curves. Through the collection of random vibrational data using accelerometers and Power Spectral Density (PSD) analysis, the stand was designed to meet the VC-C curve requirement of velocities below 12.5 µm/sec. Furthermore, the stand design was optimized to avoid resonance at common vibrational signatures throughout the frequency spectrum, placing its first natural frequency at a sufficiently high level to minimize amplification.
69

Development and Analysis of a Vibration Based Sleep Improvement Device

Himes, Benjamin John 15 July 2020 (has links)
Many research studies have analyzed the effect that whole-body vibration (WBV) has on sleep, and some have sought to use vibration to treat sleep disorders such as insomnia. It has been shown that low frequencies (f < 2Hz) are generally sleep inducing, but oscillations of this frequency are typically difficult to achieve using electromagnetic vibration drives. In the research that has been performed, optimal vibration parameters have not been determined, and the effects of multiple vibration sources vibrating at different frequencies to induce a low frequency traveling wave have not been explored. Insomnia affects millions of people worldwide, and non-pharmacological treatment options are limited. A bed excited with multiple vibration sources was used to explore beat frequency vibration as a non-pharmacological treatment for insomnia. A repeated measures design pilot study of 14 participants with mild-moderate insomnia symptom severity was conducted to determine the effects of beat frequency vibration, and traditional standing wave vibration on sleep latency and quality. Participants were monitored using high-density electroencephalography (HD-EEG). Sleep latency was compared between treatment conditions. Trends of a decrease in sleep latency due to beat frequency vibration were found (p ≤ 0.181 for AASM latency, and p ≤ 0.068 for unequivocal sleep latency). Neural complexity during wake, N1, and N2 stages were compared using Multi-Scale Sample Entropy (MSE), which demonstrated significantly lower MSE between wake and N2 stages (p ≤ 0.002). Lower MSE was found in the transition from wake to N1 stage sleep but did not reach significance (p ≤ 0.300). During N2 sleep, beat frequency vibration shows lower MSE than the control session in the left frontoparietal region. This indicates that beat frequency vibration may lead to a decrease of conscious awareness during deeper stages of sleep. Standing wave vibration caused reduced Alpha activity and increased Delta activity during wake. Beat frequency vibration caused increased Delta activity during N2 sleep. These preliminary results suggest that beat frequency vibration may help individuals with insomnia symptoms by decreasing sleep latency, by reducing their conscious awareness, and by increasing sleep drive expression during deeper stages of sleep. Standing wave vibration may be beneficial for decreasing expression of arousal and increasing expression of sleep drive during wake, implying that a dynamic vibration treatment may be beneficial. The application of vibration treatment as part of a heuristic sleep model is discussed.
70

Polarimeteric Power Spectral Density Analysis of Lung Cancer Cells

Blinzler, Adam J. 08 May 2012 (has links)
No description available.

Page generated in 0.1216 seconds