• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 5
  • 2
  • Tagged with
  • 14
  • 14
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

The d1-differential of the rank spectral sequence for algebraic k-theory / K-Théorie Algébrique et Symboles Modulaires

Sun, Fei 16 January 2015 (has links)
Dans son preprint, M. Bruno Kahn a construit une suite spectrale par rang en utilisant la méthode catégorique. Cette suite spectrale est construit par une filtration de la catégorie des modules sans-torsion de type fini d'un anneau intègre A ce qui explique le nom : suite spectrale par rangs. Cette suite spectrale converge vers les groupes d'homologies de la Q-construction de la catégorie de A-modules sans torsion de type fini et elle été utilisé par Quillen pour prouver que les K-groupes sont de génération finie pour anneau d'intègres d'un corps de nombres. Notre but de cette thèse est de calculer le différentiel de la suite spectrale par rangs qui peut servit comme une première étape d'une idée générale d'unifier les calculs de rangs des K-groupes de la courbe sur un corps fini (G. Harder) et la courbe arithmétique (A. Borel). Pour gagner ça, nous étudions le foncteur cellulaire (connexe) et les constructions de Grothendieck en détail, en particulier ses propriétés homotopiques. En utilisant ça, nous pouvons mettre le différentiel dans certain triangles distingués de foncteurs sur une catégorie, puis nous réalisons ces foncteurs explicits en langages d'immeuble de Tits, module de Steinberg et symbole modulaire au sens d'Ash-Rudolph. Nous avons aussi obliger de fabriquer un autre symbole : le symbole étendu pour étudier l'homologie de la suspension d'immeuble de Tits, mais nous montons que ce symbole est équivalent que symbole modulaire. / Bruno Kahn has constructed a rank spectral sequence by using a purely categorical approach. This spectral sequence was derived by using a filtration of the category of torsion-free modules over integral domain by ranks and hence the name: rank spectral sequence. This spectral sequence converges to the homology groups of the Q-construction over the category of finitely generated torsion-free modules over an integral ring. Quillen used it in the proof of the finite generation of K-groups of rings of integers. Our goal in this thesis is to calculate the differential of the rank spectral sequence. We believe that this is a first step towards a much bigger project, that is, to unify the calculation of the ranks of K-groups of curves over a finite field (result of G. Harder) and of arithmetic curves (result of A. Borel).To achieve our goal, we put the differential in certain distinguished triangles of coefficients/functors over some categories, and make these functors explicit in terms of Tits building and Ash-Rudolph's modular symbols. To accomplish this, we shall use Quillen's categorical homotopy theory intensively and introduce the notion of extended (modular) symbols which is equivalent to Ash-Rudolph's via the suspension of Tits buildings.
12

The Leray-Serre spectral sequence in Morse homology on Hilbert manifolds and in Floer homology on cotangent bundles

Schneider, Matti 30 January 2013 (has links)
The Leray-Serre spectral sequence is a fundamental tool for studying singular homology of a fibration E->B with typical fiber F. It expresses H (E) in terms of H (B) and H (F). One of the classic examples of a fibration is given by the free loop space fibration, where the typical fiber is given by the based loop space . The first part of this thesis constructs the Leray-Serre spectral sequence in Morse homology on Hilbert manifolds under certain natural conditions, valid for instance for the free loop space fibration if the base is a closed manifold. We extend the approach of Hutchings which is restricted to closed manifolds. The spectral sequence might provide answers to questions involving closed geodesics, in particular to spectral invariants for the geodesic energy functional. Furthermore we discuss another example, the free loop space of a compact G-principal bundle, where G is a connected compact Lie group. Here we encounter an additional difficulty, namely the base manifold of the fiber bundle is infinite-dimensional. Furthermore, as H ( P) = HF (T P) and H ( Q) =HF (T Q), where HF denotes Floer homology for periodic orbits, the spectral sequence for P -> Q might provide a stepping stone towards a similar spectral sequence defined in purely Floer-theoretic terms, possibly even for more general symplectic quotients. Hutchings’ approach to the Leray-Serre spectral sequence in Morse homology couples a fiberwise negative gradient flow with a lifted negative gradient flow on the base. We study the Morse homology of a vector field that is not of gradient type. The central issue in the Hilbert manifold setting to be resolved is compactness of the involved moduli spaces. We overcome this difficulty by utilizing the special structure of the vector field. Compactness up to breaking of the corresponding moduli spaces is proved with the help of Gronwall-type estimates. Furthermore we point out and close gaps in the standard literature, see Section 1.4 for an overview. In the second part of this thesis we introduce a Lagrangian Floer homology on cotangent bundles with varying Lagrangian boundary condition. The corresponding complex allows us to obtain the Leray-Serre spectral sequence in Floer homology on the cotangent bundle of a closed manifold Q for Hamiltonians quadratic in the fiber directions. This corresponds to the free loop space fibration of a closed manifold of the first part. We expect applications to spectral invariants for the Hamiltonian action functional. The main idea is to study pairs of Morse trajectories on Q and Floer strips on T Q which are non-trivially coupled by moving Lagrangian boundary conditions. Again, compactness of the moduli spaces involved forms the central issue. A modification of the compactness proof of Abbondandolo-Schwarz along the lines of the Morse theory argument from the first part of the thesis can be utilized.
13

O anel de cohomologia do espaço de órbitas de Zp -ações livres sobre produtos de esferas / The cohomology rings of the orbit spaces of Zp-free transformation groups of the product of two spheres

Mercado, Henry José Gullo 03 June 2011 (has links)
Denotemos por X ~ p \'S POT. m\' x \'S POT. n\' um espaço finitístico com anel de cohomologia módulo p isomorfo ao anel de cohomologia de um produto de esferas \'S POT. m\' x \'S POT. n\', o qual admite ação livre do grupo cíclico G = Zp, com p um primo ímpar. Nosso objetivo neste trabalho é determinar o anel de cohomologia do espaço de órbitas X / G, usando como ferramenta principal a seqüência espectral de Leray-Serre associada à fibração de Borel X \'SETA\' \'imath\' X G \'SETA\' \'pi\' B G, onde BG é o espaço classificante do G-fibrado universal wG = (EG;BG; pG; G;G) e XG = EG x G X é o espaço de Borel. Este resultado foi provado por R. M. Dotzel, T. B. Singh and S. P. Tripathi em [14] / Let denote by X ~ p \'S POT. m\' x \'S POT. n\' finitistic space with mod p cohomology ring isomorphic to the cohomology ring of a product of spheres \'S POT. m\' x \'S POT. n\' , which admits a free action of the cyclic group G = Zp, with p an odd prime. Our goal in this work is to determine the cohomology ring of the orbit space X / G, using as main tool the Leray-Serre spectral sequence associated to the Borel fibration X \'SETA\" \'imath\' \'X G \'SETA\' \'pi\' BG, where BG is the classifying space of the G-universal bundle wG = (EG;BG; pG; G;G) and XG = EG x G X is the Borel space. This result was proved by R. M. Dotzel, T. B. Singh and S. P. Tripathi in [14]
14

O anel de cohomologia do espaço de órbitas de Zp -ações livres sobre produtos de esferas / The cohomology rings of the orbit spaces of Zp-free transformation groups of the product of two spheres

Henry José Gullo Mercado 03 June 2011 (has links)
Denotemos por X ~ p \'S POT. m\' x \'S POT. n\' um espaço finitístico com anel de cohomologia módulo p isomorfo ao anel de cohomologia de um produto de esferas \'S POT. m\' x \'S POT. n\', o qual admite ação livre do grupo cíclico G = Zp, com p um primo ímpar. Nosso objetivo neste trabalho é determinar o anel de cohomologia do espaço de órbitas X / G, usando como ferramenta principal a seqüência espectral de Leray-Serre associada à fibração de Borel X \'SETA\' \'imath\' X G \'SETA\' \'pi\' B G, onde BG é o espaço classificante do G-fibrado universal wG = (EG;BG; pG; G;G) e XG = EG x G X é o espaço de Borel. Este resultado foi provado por R. M. Dotzel, T. B. Singh and S. P. Tripathi em [14] / Let denote by X ~ p \'S POT. m\' x \'S POT. n\' finitistic space with mod p cohomology ring isomorphic to the cohomology ring of a product of spheres \'S POT. m\' x \'S POT. n\' , which admits a free action of the cyclic group G = Zp, with p an odd prime. Our goal in this work is to determine the cohomology ring of the orbit space X / G, using as main tool the Leray-Serre spectral sequence associated to the Borel fibration X \'SETA\" \'imath\' \'X G \'SETA\' \'pi\' BG, where BG is the classifying space of the G-universal bundle wG = (EG;BG; pG; G;G) and XG = EG x G X is the Borel space. This result was proved by R. M. Dotzel, T. B. Singh and S. P. Tripathi in [14]

Page generated in 0.0687 seconds