Spelling suggestions: "subject:"epectral theory."" "subject:"8pectral theory.""
101 |
Spectral properties of displacement modelsBaker, Steven Jeffrey, January 2007 (has links) (PDF)
Thesis (Ph. D.)--University of Alabama at Birmingham, 2007. / Additional advisors: Richard Brown, Ioulia Karpechina, Ryoichi Kawai, Boris Kunin. Description based on contents viewed Feb. 5, 2008; title from title screen. Includes bibliographical references (p. 73-75).
|
102 |
Spectral-based tests for periodicitiesWei, Lai, January 2008 (has links)
Thesis (Ph. D.)--Ohio State University, 2008. / Title from first page of PDF file. Includes bibliographical references (p. 151-153).
|
103 |
Einige Bemerkungen zur Spektralzerlegung der Hecke-Algebra für die PGL2 über FunktionenkörpernSchleich, Theodor. January 1974 (has links)
Thesis--Bonn. / Extra t.p. with thesis statement inserted. Includes bibliographical references (p. 55).
|
104 |
Einige Bemerkungen zur Spektralzerlegung der Hecke-Algebra für die PGL2 über FunktionenkörpernSchleich, Theodor. January 1974 (has links)
Thesis--Bonn. / Extra t.p. with thesis statement inserted. Includes bibliographical references (p. 55).
|
105 |
Isospectral transformations between soliton-solutions of the Korteweg-de Vries equation /Lee, Tad-ming. January 1994 (has links)
Thesis (M. Phil.)--University of Hong Kong, 1994. / Includes bibliographical references (leaves 102-120).
|
106 |
Fredholm theory in general Banach algebrasHeymann, Retha 03 1900 (has links)
Thesis (MSc (Mathematics))--University of Stellenbosch, 2010. / ENGLISH ABSTRACT: This thesis is a study of a generalisation, due to R. Harte (see [9]), of Fredholm
theory in the context of bounded linear operators on Banach spaces
to a theory in a Banach algebra setting. A bounded linear operator T on a
Banach space X is Fredholm if it has closed range and the dimension of its
kernel as well as the dimension of the quotient space X/T(X) are finite. The
index of a Fredholm operator is the integer dim T−1(0)−dimX/T(X). Weyl
operators are those Fredholm operators of which the index is zero. Browder
operators are Fredholm operators with finite ascent and descent. Harte’s generalisation
is motivated by Atkinson’s theorem, according to which a bounded
linear operator on a Banach space is Fredholm if and only if its coset is invertible
in the Banach algebra L(X) /K(X), where L(X) is the Banach
algebra of bounded linear operators on X and K(X) the two-sided ideal of
compact linear operators in L(X). By Harte’s definition, an element a of a
Banach algebra A is Fredholm relative to a Banach algebra homomorphism
T : A ! B if Ta is invertible in B. Furthermore, an element of the form
a + b where a is invertible in A and b is in the kernel of T is called Weyl
relative to T and if ab = ba as well, the element is called Browder. Harte
consequently introduced spectra corresponding to the sets of Fredholm, Weyl
and Browder elements, respectively. He obtained several interesting inclusion
results of these sets and their spectra as well as some spectral mapping
and inclusion results. We also convey a related result due to Harte which
was obtained by using the exponential spectrum. We show what H. du T.
Mouton and H. Raubenheimer found when they considered two homomorphisms.
They also introduced Ruston and almost Ruston elements which led
to an interesting result related to work by B. Aupetit. Finally, we introduce
the notions of upper and lower semi-regularities – concepts due to V. M¨uller.
M¨uller obtained spectral inclusion results for spectra corresponding to upper
and lower semi-regularities. We could use them to recover certain spectral
mapping and inclusion results obtained earlier in the thesis, and some could
even be improved. / AFRIKAANSE OPSOMMING: Hierdie tesis is ‘n studie van ’n veralgemening deur R. Harte (sien [9]) van
Fredholm-teorie in die konteks van begrensde lineˆere operatore op Banachruimtes
tot ’n teorie in die konteks van Banach-algebras. ’n Begrensde lineˆere
operator T op ’n Banach-ruimte X is Fredholm as sy waardeversameling geslote
is en die dimensie van sy kern, sowel as di´e van die kwosi¨entruimte
X/T(X), eindig is. Die indeks van ’n Fredholm-operator is die heelgetal
dim T−1(0) − dimX/T(X). Weyl-operatore is daardie Fredholm-operatore
waarvan die indeks gelyk is aan nul. Fredholm-operatore met eindige styging
en daling word Browder-operatore genoem. Harte se veralgemening is gemotiveer
deur Atkinson se stelling, waarvolgens ’n begrensde lineˆere operator op
’n Banach-ruimte Fredholm is as en slegs as sy neweklas inverteerbaar is in die
Banach-algebra L(X) /K(X), waar L(X) die Banach-algebra van begrensde
lineˆere operatore op X is en K(X) die twee-sydige ideaal van kompakte
lineˆere operatore in L(X) is. Volgens Harte se definisie is ’n element a van
’n Banach-algebra A Fredholm relatief tot ’n Banach-algebrahomomorfisme
T : A ! B as Ta inverteerbaar is in B. Verder word ’n Weyl-element relatief
tot ’n Banach-algebrahomomorfisme T : A ! B gedefinieer as ’n element
met die vorm a + b, waar a inverteerbaar in A is en b in die kern van T is.
As ab = ba met a en b soos in die definisie van ’n Weyl-element, dan word
die element Browder relatief tot T genoem. Harte het vervolgens spektra
gedefinieer in ooreenstemming met die versamelings van Fredholm-, Weylen
Browder-elemente, onderskeidelik. Hy het heelparty interessante resultate
met betrekking tot insluitings van die verskillende versamelings en hulle
spektra verkry, asook ’n paar spektrale-afbeeldingsresultate en spektraleinsluitingsresultate.
Ons dra ook ’n verwante resultaat te danke aan Harte
oor, wat verkry is deur van die eksponensi¨ele-spektrum gebruik te maak.
Ons wys wat H. du T. Mouton en H. Raubenheimer verkry het deur twee
homomorfismes gelyktydig te beskou. Hulle het ook Ruston- en byna Rustonelemente
gedefinieer, wat tot ’n interessante resultaat, verwant aan werk van
B. Aupetit, gelei het. Ten slotte stel ons nog twee begrippe bekend, naamlik
’n onder-semi-regulariteit en ’n bo-semi-regulariteit – konsepte te danke
aan V. M¨uller. M¨uller het spektrale-insluitingsresultate verkry vir spektra
wat ooreenstem met bo- en onder-semi-regulariteite. Ons kon dit gebruik
om sekere spektrale-afbeeldingsresultate en spektrale-insluitingsresultate wat
vroe¨er in hierdie tesis verkry is, te herwin, en sommige kon selfs verbeter
word.
|
107 |
Open periodic waveguides : Theory and computation / Guides d'ondes périodiques ouverts : Théorie et calculVasilevskaya, Elizaveta 07 July 2016 (has links)
Cette thèse porte sur la propagation des ondes acoustiques dans des milieux périodiques.Ces milieux ont des propriétés remarquables car le spectre associée à l’opérateur d’ondesdans ces milieux a une structure de bandes : il existe des plages de fréquences danslesquelles les ondes monochromatiques ne se propagent pas. Plus intéressant encore, enintroduisant des défauts linéiques dans ce type de milieux, on peut créer des modes guidésà l’intérieur de ces bandes de fréquences interdites. Dans ce manuscrit nous montrons qu’ilest possible de créer de tels modes guidés dans le cas de milieux périodiques particuliersde type quadrillage : plus précisément, le domaine périodique considéré est constitué duplan R2 privé d’un ensemble infini d’obstacles rectangulaires régulièrement espacés (d’unedistance ") dans deux directions orthogonales du plan, que l’on perturbe localement endiminuant la distance entre deux colonnes d’obstacles. Les résultats sont ensuite étendusau cas 3D.Ce travail comporte un aspect théorique et un aspect numérique. Du point de vue théoriquel’analyse repose sur le fait que, comme " est petit, le spectre de l’opérateur associé ànotre problème est "proche" du spectre d’un problème posé sur le graphe obtenu commela limite géométrique du domaine quand " tend vers 0. Or, pour le graphe limite, il estpossible de calculer explicitement le spectre. Ensuite, en utilisant des méthodes d’analyseasymptotique on étudie le spectre de l’opérateur non-limite. On illustre les résultats théoriquespar des résultats numériques obtenus à l’aide d’une méthode numérique spécialementdédiée aux milieux périodiques : cette dernière est basée sur la réduction du problèmede valeurs propres initial (linéaire) posé dans un domaine non-borné à un problème nonlinéaireposé dans un domaine borné (en utilisant l’opérateur de Dirichlet-to-Neumannexact). / The present work deals with propagation of acoustic waves in periodic media. Thesemedia have particularly interesting properties since the spectrum associated with theunderlying wave operator in such media has a band-gap structure: there exist intervals offrequences for which monochromatic waves do not propagate. Moreover, by introducinglinear defects in this kind of media, one can create guided modes inside the bands offorbidden frequences. In this work we show that it is possible to create such guidedmodes in the case of particular periodic media of grid type: more precisely, the periodicdomain in question is R2 minus an infinite set of rectangular obstacles periodically spacedin two orthogonal directions (the distance between two neighbour obstacles being "),which is locally perturbed by diminishing the distance between two columns of obstacles.The results are extended to the 3D case.This work has a theoretical and a numerical aspect. From the theoretical point of view theanalysis is based on the fact that, " being small, the spectrum of the operator associatedwith our problem is "close" to the spectrum of a problem posed on a graph which is ageometric limit of the domain as " tends to 0. However, for the limit graph the spectrumcan be computed explicitly. Then, we study the spectrum of the non-limit operatorusing asymptotic analysis. Theoretical results are illustrated by numerical computationsobtained with a numerical method developed for study of periodic media: this method isbased on the reduction of the initial (linear) eigenvalue problem posed in an unboundeddomain to a non-linear problem posed in a bounded domain (using the exact Dirichletto-Neumann operator).
|
108 |
Application of Spectral Analysis to the Cycle Regression AlgorithmShah, Vivek 08 1900 (has links)
Many techniques have been developed to analyze time series. Spectral analysis and cycle regression analysis represent two such techniques. This study combines these two powerful tools to produce two new algorithms; the spectral algorithm and the one-pass algorithm. This research encompasses four objectives. The first objective is to link spectral analysis with cycle regression analysis to determine an initial estimate of the sinusoidal period. The second objective is to determine the best spectral window and truncation point combination to use with cycle regression for the initial estimate of the sinusoidal period. The third is to determine whether the new spectral algorithm performs better than the old T-value algorithm in estimating sinusoidal parameters. The fourth objective is to determine whether the one-pass algorithm can be used to estimate all significant harmonics simultaneously.
|
109 |
Numerical solutions for the Navier-Stokes equations and the Fokker-Planck equations using spectral methodsFok, Chin Man 01 January 2002 (has links)
No description available.
|
110 |
[en] STABILITY OF MINIMAL SURFACES / [pt] ESTABILIDADE DE SUPERFÍCIES MÍNIMASDANIA GONZALEZ MORALES 23 June 2015 (has links)
[pt] Este trabalho tem como propósito o estudo da estabilidade de hipersuperfícies mínimas imersas em R n mais 1. Apresentamos algumas caracterizações de hipersuperfícies mínimas deduzindo as fórmulas da primeira e segunda variação do funcional da área. Em seguida, a partir do cálculo de variações, estabelecemos a relação entre a teoria espectral e a estabilidade. Em particular, estudamos a caraterização variacional do primeiro autovalor do operador de estabilidade. Com base nesta relação mostramos alguns critérios de estabilidade para hipersuperfícies mínimas imersas em R n mais 1. Em especial, exibimos em detalhes o critério de estabilidade de Barbosa-Do Carmo para a estabilidade de superfícies mínimas em R3. Assim como o critério de Fischer-Colbrie-Shoen para superfícies mínimas completas, não compactas, usando a teoria elíptica. Concluímos com a análise da estabilidade do catenoide em R3 e em R n mais 1. Obtemos os domínios de estabilidade do catenoide em R3 a partir da teoria de Sturm Liouville. Exibimos o teorema de estabilidade de Lindelof em R3 e em R n mais 1 e a propriedade do catenoide ter índice 1. / [en] This work aims to study the stability of minimally immersed hypersurfaces in R n more 1. We present some characterizations of minimal hypersurfaces deducting the formulas of the first and second variation of area. Afterwards, from the variational calculus, we establish the relationship between spectral theory and stability. Particulary, we study a variational characterization of the first eigenvalue associated to the stability operator. Based in this relationship we show some stability criteria for minimally immersed hypersurfaces in R n more 1. In particular, we exhibit in details the Barbosa-Do Carmo criterion for the stability of minimal surfaces in R3. We also establish the Fischer- Colbrie-Shoen criterion for complete, non compact, minimal surfaces using the elliptic theory. We conclude with the analysis of the stability of the catenoid in R3 and in Rn more 1. This is done by studying the stability domains of the catenoid in R3 using the Sturm-Liouville theory. We explain the Lindelof stability theorem in R3 and in R n more 1 and the property of the catenoids have index 1.
|
Page generated in 0.0746 seconds