• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Power-scavenging Tumbleweed Rover

Basic, Goran Jurisa 14 December 2010 (has links)
Most current space robotics vehicles use solar energy as their prime energy source. In spherical robotic vehicles the use of solar cells is very restricted. Focusing on the particular problem, an improved method to generate electrical power will be developed; the innovation is the use of an internal pendulum-generator mechanism to generate electrical power while the ball is rolling. This concept will enable spherical robots on future long-duration planetary exploration missions. Through a developed proof-of-concept prototype, inspired by the Russian thistle plant, or tumbleweed, this thesis will demonstrate power generation capabilities of such a mechanism. Furthermore, it will also present and validate a parametric analytical model that can be used in future developments as a design tool to quantify power and define design parameters. The same model was used to define the design parameters and power generation capabilities of such a system in Martian environment.
2

Power-scavenging Tumbleweed Rover

Basic, Goran Jurisa 14 December 2010 (has links)
Most current space robotics vehicles use solar energy as their prime energy source. In spherical robotic vehicles the use of solar cells is very restricted. Focusing on the particular problem, an improved method to generate electrical power will be developed; the innovation is the use of an internal pendulum-generator mechanism to generate electrical power while the ball is rolling. This concept will enable spherical robots on future long-duration planetary exploration missions. Through a developed proof-of-concept prototype, inspired by the Russian thistle plant, or tumbleweed, this thesis will demonstrate power generation capabilities of such a mechanism. Furthermore, it will also present and validate a parametric analytical model that can be used in future developments as a design tool to quantify power and define design parameters. The same model was used to define the design parameters and power generation capabilities of such a system in Martian environment.
3

Design and Development of Rolling and Hopping Ball Robots for Low Gravity Environment

January 2016 (has links)
abstract: In-situ exploration of planetary bodies such as Mars or the Moon have provided geologists and planetary scientists a detailed understanding of how these bodies formed and evolved. In-situ exploration has aided in the quest for water and life-supporting chemicals. In-situ exploration of Mars carried out by large SUV-sized rovers that travel long distance, carry sophisticated onboard laboratories to perform soil analysis and sample collection. But their large size and mobility method prevents them from accessing or exploring extreme environments, particularly caves, canyons, cliffs and craters. This work presents sub- 2 kg ball robots that can roll and hop in low gravity environments. These robots are low-cost enabling for one or more to be deployed in the field. These small robots can be deployed from a larger rover or lander and complement their capabilities by performing scouting and identifying potential targets of interest. Their small size and ball shape allow them to tumble freely, preventing them from getting stuck. Hopping enables the robot to overcome obstacles larger than the size of the robot. The proposed ball-robot design consists of a spherical core with two hemispherical shells with grouser which act as wheels for small movements. These robots have two cameras for stereovision which can be used for localization. Inertial Measurement Unit (IMU) and wheel encoder are used for dead reckoning. Communication is performed using Zigbee radio. This enables communication between a robot and a lander/rover or for inter-robot communication. The robots have been designed to have a payload with a 300 gram capacity. These may include chemical analysis sensors, spectrometers and other small sensors. The performance of the robot has been evaluated in a laboratory environment using Low-gravity Offset and Motion Assistance Simulation System (LOMASS). An evaluation was done to understand the effect of grouser height and grouser separation angle on the performance of the robot in different terrains. The experiments show with higher grouser height and optimal separation angle the power requirement increases but an increase in average robot speed and traction is also observed. The robot was observed to perform hops of approximately 20 cm in simulated lunar condition. Based on theoretical calculations, the robot would be able to perform 208 hops with single charge and will operate for 35 minutes. The study will be extended to operate multiple robots in a network to perform exploration. Their small size and cost makes it possible to deploy dozens in a region of interest. Multiple ball robots can cooperatively perform unique in-situ science measurements and analyze a larger surface area than a single robot alone on a planet surface. / Dissertation/Thesis / Masters Thesis Mechanical Engineering 2016
4

Grid-based Cyclic Multi-robot Allocation for Object Carrying

Jee Hwan Park (9187781) 30 July 2020 (has links)
In this thesis, we are addressing new method of object transportation using multi-robot system. The new method of object transportation is called A grid-based cyclic robot allocation (GCRA) method which consists multiple spherical robots. The object is placed on top of group of spherical robots before the transportation. The rotation of the multiple spherical robots cause the displacement of the object and reach the goal location based on the direction and speed of the rotation of the robots. The GCRA method for spherical robots is proposed along with specific stability criterion, which designs the formation of the multi-robot system. The formation is created based on the customized grid which is to be modified based on the properties of the object. The shape and the center of gravity of the shape define the horizontal gap, $g_x$ and vertical gap, $g_y$. All the possible locations of spherical robots is the cross points of grid which implies that $g_x$ and $g_y$ defines the distance between the robots and based on the boundary of the robots placed underneath the object, the condition of the stability is defined. It also identifies minimum number of robots required based on the arbitrary shape of an object for stable omni-directional translation of the object on a 2 dimensional space. The desired positions and formation of the robots is identified based goal position of the object. Under centralized system, position control is applied to drive the robots to the desired positions. The position control simultaneously makes the object mobile and maintain the stability of the object. Mathematical proof of the proposed method is shown verifying the stability of the transportation process with the assumptions of no slip between the robots and the object. 2 Dimensional Simulation results of robot allocation using GCRA for several arbitrary shapes certify the proposed method.

Page generated in 0.0741 seconds