• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 115
  • 22
  • 15
  • 9
  • 4
  • 2
  • 1
  • Tagged with
  • 193
  • 193
  • 102
  • 44
  • 43
  • 43
  • 43
  • 32
  • 30
  • 30
  • 28
  • 28
  • 27
  • 26
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Relativistic coupled cluster theory - in molecular properties and in electronic structure / La théorie coupled cluster relativiste - pour le calcul de la structure électronique et des propriétés moléculaires

Shee, Avijit 26 January 2016 (has links)
L'importance des effets relativistes dans la chimie a été reconnu depuis les années 1980. Par exemple, sans la relativité (a) l'or aurait la même couleur que l'argent (b) le mercure ne serait pas liquide à la température ambiante et (c) nos voitures ne démarrent pas avec une batterie de plomb. Pour une description théorique de la structure et la réactivité des éléments lourds, la relativité est un ingrédient essentiel. Le hamiltonien pour les calculs moléculaires relativistes à 4 composantes est construit en remplaçant la partie mono-électronique de l'hamiltonien électronique non-relativiste par le hamiltonien de Dirac. La partie bi-électronique est approchée par le terme de r Coulomb comme dans le cas non relativiste, ce qui donnel'hamiltonien de Dirac-Coulomb (DC). Pour réduire le coût de calcul, on peut utiliser des hamiltoniens relativistes à 2 composantes. Parmi eux, l'hamiltonien exact à 2 composantes (X2C) est le plus précise. La corrélation électronique est, cependant, une contribution très importante pour obtenir une description théorique à la fois qualitative et quantitative des spectroscopies moléculaires, réactions, etc. Dans cette thèse, nous avons étudié l'interaction entre la relativité et de la corrélation. à la fois par des développements méthodologiques et par des applications moléculaires. Dans la première partie de la thèse, nous avons calculé les constantes spectroscopiques dimères des gaz rares lourds. La liaison faible de ces dimères ne peut être décrit que par l'inclusion de la corrélation électronique. Les dimères des gaz rares les plus lourds, le radon et l'eka-radon, nécessite de plus un traitement adéquat de la relativité. Nos calculs sont basés sur l'hamiltonien X2Cmmf, à la fois avec des méthodes de corrélation basés sur une fonction d'onde et séparation de porte (srDFT). La deuxième partie de cette thèse concerne la simulation de la spectroscopie des rayons X, où l'on sonde la région du cœur d'une molécule, ou la relativité joue un rôle très important. Nous avons étudié la spectroscopie L-edge de la série isoélectronique: UO22 +, UNO+, et UN2, où le couplage spin-orbite joue un rôle majeur. Au niveau des méthodes, nous avons considéré MP2 à couches ouvertes et la théorie de la fonctionnelle de la densité dépendante de temps (TDDFT). Dans un autre étude, nous avons simulé la spectroscopie K-edge de la série H2X (X = O, S, Se, Te) et XH3 (X = N, P, As) ainsi que les molécules N2 et N2O2. Pour ces systèmes, l'interaction spin-orbite est moins important. Par conséquent, nous avons utilisé un hamiltonien DC sans spin (SF). Certains des systèmes pris en compte dans ce travail sont de caractère multi-référentielles ; nous avons utilisé la methode Coupled Cluster Multi-référentielle de type State Universal et adapté au groupe unitaire (UGA-SUMRCC) comme une méthode de corrélation. Dans la troisième et partie principale de la thèse, l'attention est de nouveau sur la relativité et de la corrélation, mais pour le calcul des propriétés électriques et magnétiques moléculaires. Nous avons développé et mis en œuvre un module pour le calcul des valeurs moyennes au niveau relativiste à 4-composantes coupled cluster monoréferentiel. Les propriétés qui sondent la densité électronique près de noyaux (lourds), telles que la résonance paramagnétique électronique (RPE), les paramètres des gradients de champ électrique et la non-conservation de la parité (NCP) des molécules chirales ,sont parfaitement adaptés pour l'application de cette méthode. Pour l'instant, nous avons étudié que la NCP. Ce module dans le logiciel DIRAC pour les calculs moléculaires relativistes fournit un cadre propice pour la mise en œuvre de méthodes de CC relativistes employant la symétrie de groupes doubles et de permutation de manière très efficace. En perspective, nous ciblons la mise en œuvre de la réponse linéaire CC pour le calcul des énergies d'excitation et propriétés moléculaires de second ordre tels que les paramètres de RMN. / The importance of relativistic effects in chemistry has been recognized since the 1980s. Without relativity (a) gold would have the same colour as silver (b) mercury would not be liquid at room temperature (c) our cars would not start (lead-battery). For a theoretical description of the structure and reactivity of heavy-elements, relativity is considered as an essential ingredient. The Hamiltonian for the 4-component relativistic molecular calculations is constructed by replacing the one-electronic part of the non-relativistic molecular Hamiltonian by the Dirac Hamiltonian. The two-electronic part of the Hamiltonian is approximated by the Coulombic repulsion term as in the non-relativistic case. The resulting Hamiltonian is called the Dirac-Coulomb (DC) Hamiltonian. For chemical applications there exist a class of relativistic Hamiltonians, where one-electronic part of the DC Hamiltonian is transformed to a 2-component one. Among them the eXcact 2-component (X2C) Hamiltonian is the most accurate one. Electron correlation, however, is a very important contribution to achieve a both qualitative and quantitative correct description of molecular spectroscopies, reactions etc. It is, therefore, essential to study the interplay between relativity and correlation. In this thesis, we have studied this interplay both in terms methodological developments and molecular applications. In the first part of the thesis we have studied the spectroscopic constants of the heavy rare gas dimers. The weak bonding of those dimers can only be described by the inclusion of electron correlation. The heavier analogues in the rare gas series i.e, Radon and eka-Radon, in addition require adequate treatment of relativity. Our calculations are based on the eXact 2-Component molecular-mean field (X2Cmmf) Hamiltonian both with wave function methods and range-separated DFT methods. The second part of this thesis simulates X-ray spectroscopy, where one probes the core region of a molecule. In the core region relativity plays a very significant role. Removal and excitation of electrons from that region involve various processes, which are beyond a mean-field description. We have studied L-edge spectroscopy of the isoelectronic series: UO22+, UNO+, and UN2, where spin-orbit coupling plays a major role. For the theory we have considered single reference open-shell MP2 and Time Dependent Density functional Theory (TDDFT). In another work, we have studied K-edge spectroscopy of the H2X (X= O, S, Se, Te) and XH3 (X= N, P, As) series as well as N2, N2O2 molecules. For this study spin-orbit coupling is less important, therefore, we have treated them with the Spin-Free (SF) DC Hamiltonian. Some of the systems considered in this work are Multi-Reference in nature; we have used Unitary Group Adapted (UGA) State Universal Multi-reference Coupled Cluster (UGA-SUMRCC) theory as a correlation method. In the third and major part of the thesis, the thrust is again on relativity and correlation, but for the calculation of molecular electric and magnetic properties. We have developed and implemented a module for the calculation of expectation values at the 4-component Relativistic Single Reference Coupled Cluster level. Properties that probe the electron density near (heavy) nuclei, such as Electron Paramagnetic Resonance (EPR) parameters, electric field gradients and parity non-conservation (PNC) in chiral molecules are ideally suited for the application of this method. However, we have only studied PNC so far. This module in the DIRAC software for relativstic molecular calculations provides a convenient framework for the implementation of relativistic CC methods employing double group and permutation symmetry very efficiently. In the near future we therefore target the implementation of Linear Response CC for the calculation of excitation energies and second-order molecular properties such as NMR parameters.
132

Contribution à l'étude quantique du carbure de tungstène neutre (WC) et ionisé (WCq+, q=1, 2) / Contribution to the quantum study of the tungsten carbide neutral (WC) and ionized (WCq+, q = 1, 2)

Sabor, Said 18 April 2015 (has links)
Les carbures et oxydes des métaux de transition sont d'une importance capitale dans le domaine industriel voir catalytique. Le carbure de tungstène WC a été identifié comme un bon substituant des métaux nobles tel que le platine dans le domaine catalytique. Le but de ce travail de thèse est d'appliquer des méthodes de chimie quantique les plus poussées pour déterminer la structure électronique, la stabilité et la nature de liaison chimique des diatomiques WC et WC2+. Notre recherche préliminaire est motivée par les données spectroscopiques disponibles sur W, W+, W2+, WC et WC2+. La méthodologie adoptée, CASSCF/MRCI/MRCI+Q/aug-cc-pV5Z(-PP) implémentée dans le code MOLPRO, consiste à réaliser des calculs quantique tenant en compte des effets de corrélation et relativistes avec un traitement spécifique du couplage spin−orbite pour la recherche des courbes d'énergie potentielle de l'état fondamental et des états excités de plus basses énergies de WCn+ (n=0-2) tout en utilisant une base suffisamment étendue. Les résultats de ce travail sont en bon accord avec ceux disponibles dans la littérature. En outre, dans ce travail nous avons confirmé pour la première fois que le carbure diatomique dicationique WC2+ est thermodynamiquement stable / Metal carbides and oxides are more interesting in catalytic and industrial domains. Tungsten carbide WC has been detected as serious substituent of platinum Pt catalytic. The ultimate goal of this thesis is theoretical studies of electronic structure, stability and the bound nature on WC, WO and its cations. Our preliminary research were motiving by the available spectroscopic data on W, W+, W2+, WC et WC2+. We used the methodology (CASSCF/MRCI/MRCI+Q/aug-cc-pV5Z(-PP)) implemented on MOLPRO package to perform quantum calculations with high accuracy taking into account the correlation and relativistic effects with a specific treatment of spin orbit coupling for some low lying excited electronic states of WCn+, (n=0, 1 et 2). Our results are shown in good agreement with those available in the literature. Furthermore, in this work for the first time we demonstrated that a carbide dication (WC2+) is thermodynamically stable
133

Strongly Correlated Topological Phases / Phases topologiques fortement corrélées

Liu, Tianhan 28 September 2015 (has links)
Cette thèse porte principalement sur l'étude de modèles de fermions en interactions contenant un couplage spin-orbite. Ces modèles (i) peuvent décrire une classe de matériaux composés d'iridates sur le réseau en nid d'abeille ou (ii) pourraient être réalisés artificiellement dans des systèmes d’atomes froids. Nous avons étudié, dans un premier temps, le système à demi-remplissage avec l'interaction de Hubbard et un couplage spin-orbite anisotrope. Nous avons trouvé plusieurs phases: la phase isolant topologique pour de faibles corrélations, et deux phases avec des ordres magnétiques frustrés, l'ordre de Néel et l'ordre spiral, dans la limite de très fortes corrélations. La transition entre les régimes de faibles et de fortes corrélations est une transition de Mott dans laquelle les excitations électroniques se fractionnent en excitations de charge et de spin. Les charges sont localisées par l'interaction. Le secteur de spin présente de fortes fluctuations qui sont modélisées par un gaz d’instantons. Nous avons ensuite exploré la physique d'un système régi au demi-remplissage par le modèle de Kitaev-Heisenberg, qui présente une phase magnétique de type zig-zag. En dopant le système, autour du quart remplissage, la structure de bande présente de nouveaux centres de symétrie en plus de la symétrie d'inversion. Le couplage de spin de Kitaev-Heisenberg favorise alors la formation de paires de Cooper dans un état triplet autour de ces centres de symétrie. La condensation de ces paires de Cooper autour de ces vecteurs d'onde non triviaux se manifeste par une modulation spatiale du paramètre d'ordre supraconducteur, comme dans la supraconductivité de Fulde–Ferrell–Larkin–Ovchinnikov (FFLO). La dernière partie de la thèse propose et étudie une implémentation des phases topologiques dite de Haldane et de Kane-Mele dans un système avec deux espèces de fermions sur le réseau en nid d'abeille, stabilisée grâce à l’interaction RKKY médiée par l’espèce rapide et qui agit sur l’espèce lente. / This thesis is dedicated largely to the study of theoretical models describing interacting fermions with a spin-orbit coupling. These models (i) can describe a class of 2D iridate materials on the honeycomb lattice or (ii) could be realized artificially in ultra-cold gases in optical lattices. We have studied, in the first part, the half-filled honeycomb lattice model with on-site Hubbard interaction and anisotropic spin-orbit coupling. We find several different phases: the topological insulator phase at weak coupling, and two frustrated magnetic phases, the Néel order and spiral order, in the limit of strong correlations. The transition between the weak and strong correlation regimes is a Mott transition, through which electrons are fractionalized into spins and charges. Charges are localized by the interactions. The spin sector exhibits strong fluctuations which are modeled by an instanton gas. Then, we have explored a system described by the Kitaev-Heisenberg spin Hamiltonian at half-filling, which exhibits a zig-zag magnetic order. While doping the system around the quarter filling, the band structure presents novel symmetry centers apart from the inversion symmetry point. The Kitaev-Heisenberg coupling favors the formation of triplet Cooper pairs around these new symmetry centers. The condensation of these pairs around these non-trivial wave vectors is manifested by the spatial modulation of the superconducting order parameter, by analogy to the Fulde–Ferrell–Larkin–Ovchinnikov (FFLO) superconductivity. The last part of the thesis is dedicated to an implementation of the Haldane and Kane-Mele topological phases in a system composed of two fermionic species on the honeycomb lattice. The driving mechanism is the RKKY interaction induced by the fast fermion species on the slower one.
134

Co(II) Based Magnetic Systems. Part I Spin Crossover Systems and Dendritic Frameworks. Part II Co(II) Single Molecule Magnets.

Farghal, Ahmed M. S. January 2012 (has links)
This work comprises two main parts. The first part outlines our efforts to expand on the recent work of Gütlich et.al. by synthesizing Co(II) based spin crossover systems within a dendritic framework. We wanted to investigate the possibility of synthesizing different first generation, triazole containing dendrimers using “click” type reactions and their coordination ability with Co(II) ions. To this end we have had limited success mainly due to the numerous challenges in synthesizing a pure dendrimer product. The second part details our efforts in the synthesis of a mononuclear Co(II) based single molecule magnet. This comes as an extension to recent reports by Chang and Long where they have successfully obtained mononuclear Fe(II) single molecule magnets by inducing structural distortions within the complexes to amplify the spin-orbit coupling. We postulated that the use of Co(II) in conjunction with a bulky ligand framework would lead to desirable magnetic properties. We chose the known bis(imino)pyridine ligand scaffold due to its rich chemistry and its interesting and unexpected coordination behaviour, as we have seen in previous research efforts by our lab. To this end we were successful in isolating and characterizing 4 compounds, and we have carried out detailed magnetic measurements on the two most magnetically interesting species.
135

Proton Coupled Electron Transfer at Heavy Metal Sites

Delony, Daniel 10 December 2020 (has links)
No description available.
136

Manipulation et détection d'ondes de spin via l'interaction spin-orbite dans des guides d'ondes ultraminces Ta/FeCoB/MgO à anisotropie perpendiculaire / Manipulation and detection of spin waves using spin-orbit interaction in ultrathin perpendicular anisotropy Ta/FeCoB/MgO waveguides

Fabre, Mathieu-Bhayu 10 July 2019 (has links)
Les ondes de spin sont une des voies technologiques proposées pour surmonter les obstacles que rencontre la miniaturisation des complementary metal-oxide-semiconductor (CMOS) dans la gamme du nanomètre, comme en témoignent les derniers développements en matière de dispositifs logiques à ondes de spin. Cependant, l'attrait industriel de ces preuves de concept est conditionné par leur intégration évolutive à la technologie CMOS. Ici, nous présentons des pistes ultrafines de Ta/CoFeB/MgO utilisées comme guides d'ondes de spin. Ce système a été choisi pour sa compatibilité avec les procédés CMOS, son anisotropie magnétique perpendiculaire et ses fortes interactions spin-orbite. Ces derniers sont intéressants pour manipuler les ondes de spin et ont été caractérisés par résonance ferromagnétique à couple de spin où il est démontré que l'effet Hall de spin inverse est responsable de la détection de la dynamique de magnétisation. Ensuite, nous utilisons des guides d'ondes coplanaires nanométriques intégrés pour exciter localement des ondes de spin dans une large gamme de vecteurs d'ondes. La comparaison du spectre d'ondes de spin mesuré avec les calculs analytiques montre que l'effet Hall de spin inverse permet la détection des ondes de spin indépendamment de leur vecteur d'onde avec des longueurs d'onde allant jusqu'à 150 nm. Des expériences complémentaires de diffusion de la lumière de Brillouin révèlent que les ondes de spin dans le guide d'ondes de spin ultra-mince à anisotropie magnétique perpendiculaire ont des longueurs de propagation étonnamment élevées compte tenu de l'amortissement relativement élevé des systèmes Ta/CoFeB/MgO. Ces résultats ouvrent la voie à des dispositifs à ondes de spin ultraminces compatibles CMOS avec des techniques d'excitation et de détection évolutives jusqu'à l'ordre du nanomètre, avec la perspective de contrôler les ondes de spin via des couples spin-orbite. / Spin-waves have been proposed as a possible technological path to overcome the hurdles encountered by the miniaturization of complementary metal-oxide-semiconductor (CMOS) into the nanometer range, demonstrated by recent developments in spin-wave-based logic devices. However the industrial appeal of these proofs-of-concept is conditional upon their scalable integration with CMOS technology. Here, we report on ultrathin Ta/CoFeB/MgO wires used as spin-wave waveguides. This system is chosen for its compability with CMOS processes, its perpendicular magnetic anisotropy and strong spin-orbit interactions. The latter are of interest for manipulating spin waves and are characterized via spin-torque ferromagnetic resonance where it is shown that the inverse spin Hall effect is responsible for the detection of magnetization dynamics. Following this, we use integrated nanometric coplanar waveguides to locally excite spin-waves in a broad range of wavevectors. Comparison of the measured spin-wave spectrum with analytical calculations show that the inverse spin Hall effect allows the wavevector-independent detection of spin-waves with wavelengths down to 150 nm. Complementary Brillouin light scattering experiments reveal that spin-waves in the ultrathin spin-wave waveguide with perpendicular magnetic anisotropy have unexpectedly high propagation lengths considering the relatively high damping in Ta/CoFeB/MgO systems. These findings pave the way for ultrathin CMOS-compatible spin-wave devices with excitation and detection techniques that are scalable into the nanometer range, with the prospect of controlling spin-waves via spin-orbit torques.
137

Etude des effets d'interfaces sur le retournement de l'aimantation dans des structures à anisotropie magnétique perpendiculaire / Study of Interface Effects on Magnetization Reversal in Magnetic Structures with Perpendicular Magnetic Anisotropy

Zhao, Xiaoxuan 06 December 2019 (has links)
Les mémoires MRAM (Magnetic Random Access Memory) sont l’une des technologies émergentes visant à devenir un dispositif de mémoire «universelle» applicable à une grande variété d’applications. La combinaison du couple de spin-orbite (SOT) résultant de l’effet Hall de spin (SHE) et de l’interaction de Dzyaloshinskii – Moriya (DMI) aux interfaces entre un métal lourd et une couche ferromagnétique s’est révélée être un mécanisme efficace pour induire une propagation de parois magnétiques chirales à des faibles densité de courant. Les dispositifs à parois magnétiques devraient constituer la prochaine génération de supports d’information en raison de leur potentiel pour des densités de stockage très élevées. Cependant, une limitation cruciale est la présence de défauts structuraux qui piègent les parois magnétiques et induisent des courants de seuil élevés ainsi que des effets stochastiques importants. L’origine du piégeage résulte de la présence de défauts structuraux aux interfaces entre la couche magnétique ultra-mince et les autres couches (isolants et/ou métaux lourds) qui induisent une distribution spatiale des propriétés magnétiques comme l’anisotropie magnétique perpendiculaire (PMA) ou le DMI. Comprendre l’influence de la structure des interfaces sur la propagation de parois et sur le DMI en particulier est cruciale pour la conception de futurs dispositifs basse consommation. C’est dans ce contexte très novateur que mon doctorat s’est focalisé sur la manipulation de la structure des interfaces dans des couches ultra-minces à anisotropie magnétique perpendiculaire. Des structures de CoFeB-MgO ont été utilisées afin de mieux comprendre l'impact de la structure des interfaces sur l’anisotropie, le DMI, la propagation de parois et les phénomènes de SOT. L’approche innovante que nous avons utilisée est basée sur l’irradiation par des ions légers pour contrôler le degré de mélange aux interfaces. Sous l’effet du mélange induit par l’irradiation, nous avons observé dans des structures de W-CoFeB-MgO une forte augmentation de la vitesse de parois dans le régime de creep, compatible avec une réduction de la densité des centres de piégeage. Nous avons aussi démontré que l'anisotropie de l'interface Ki et le DMI mesuré par propagation asymétrique de parois se comportent de la même façon en fonction du mélange aux interfaces. Finalement, nous avons fabriqué des barres de Hall afin de mesurer la commutation de l’aimantation induite par SOT. Le centre des croix de Hall a été irradié afin de diminuer localement l’anisotropie. Nous avons observé une réduction de 60% de la densité de courant critique après l’irradiation correspondant au retournement des croix de Hall irradiés par propagation de parois. Notre étude fournit de nouvelles pistes concernant le développement de mémoires magnétiques à faible consommation, de dispositifs logiques et neuromorphiques. / Magnetic Random Access Memory (MRAM), as one of the emerging technologies, aims to be a “universal” memory device for a wide variety of applications. The combination of the spin orbit torque (SOT) resulting from the spin Hall effect (SHE) and the Dzyaloshinskii–Moriya interaction (DMI) at interfaces between heavy metals and ferromagnetic layers has been demonstrated to be a powerful mean to drive efficiently domain-wall (DW) motion, which are expected to be the promising next generation of information carriers owing to ultra-low driving currents and ultra fast DW motion. However, the crucial limitation of SOT induced domain wall motion results from the presence of pinning defects that can induce large threshold currents and stochastic behaviors. Such pinning defects are strongly related to structural inhomogeneities at the interfaces between the ultra-thin ferromagnetic layer and the other materials (insulator and/or heavy metals) that induce a spatial distribution of magnetic properties such as perpendicular magnetic anisotropy (PMA) or DMI. Therefore, understanding the role of the interface structure on DW motion and DMI is crucial for the design of future low power devices.It is under this innovative context that my Ph.D. research has focused on the manipulation of interface structure in ultra-thin magnetic films with perpendicular magnetic anisotropy. CoFeB-MgO structures have been used in order to understand the impact of interface structure on anisotropy, DMI, domain wall motion and SOT phenomena. The innovative approach we have used in this PhD research is based on light ion irradiation to control the degree of intermixing at interfaces. In W-CoFeB-MgO structures with high DMI, we have observed a large increase of the DW velocity in the creep regime upon He⁺ irradiation, which is attributed to the reduction of pinning centres induced by interface intermixing. Asymmetric in-plane field-driven domain expansion experiments show that the DMI value is slightly reduced upon irradiation, and a direct relationship between DMI and interface anisotropy is demonstrated. Using local irradiated Hall bars in SOT devices, we further demonstrate that the current density for SOT induced magnetization switching through DW motion can be significantly reduced by irradiation. Our finding provides novel insights into the development of low power spintronic-memory, logic as well as neuromorphic devices.
138

Electron Transport in Chalcogenide Nanostructures

Nilwala Gamaralalage Premasiri, Kasun Viraj Madusanka 28 January 2020 (has links)
No description available.
139

Two-dimensional ferromagnetism, strong Rashba effect and valence changes in lanthanide intermetallics: A photoemission study

Schulz, Susanne 13 June 2023 (has links)
The search for novel technologies like spin-based electronics and suitable materials for respective devices requires a profound understanding of fundamental interactions regarding electron spin and related properties. In the same context, with ongoing device miniaturisation, surface-related phenomena become increasingly important. Here, we study the electronic and magnetic properties of quasi-2D electron states at a metallic surface under the influence of the Rashba effect and exchange coupling to localised 4f moments that order magnetically at low temperatures. Particularly, in the considered systems, both interactions are of similar strengths, a case which is rather unexplored in the literature. Our model system is the (001) surface of intermetallic LnIr2Si2 compounds with ThCr2Si2 structure, where Ln = lanthanide. With this work, we continue our long-term systematic study of the LnT2Si2 compounds with T = Rh, where the Rashba-like spin-orbit coupling is about a hundred times weaker than the exchange interaction. Using ARPES and DFT we explore with GdIr2Si2 and EuIr2Si2 two representatives of the LnIr2Si2 family, which are both characterised by the insensitivity of the 4f shell to the crystal electric field. On the other hand, they have fundamentally different bulk properties. GdIr2Si2 is a robust bulk antiferromagnet with a high ordering temperature of 87 K, whereas EuIr2Si2 is a mixed-valent material with a non-magnetic ground state in the bulk. The mean Eu valency is strongly temperature dependent, changing continuously from a nearly divalent magnetic configuration at room temperature to a nearly trivalent non-magnetic Eu state below 50K. Studying the surface states in both compounds we find that the magnitude of the Rashba-like spin-orbit interaction increases tremendously in comparison to the isoelectronic Rh compounds. This is reflected in a huge splitting of the surface state bands and emphasizes the importance of atomic spin-orbit coupling in high Z elements for the strength of the Rashba effect. Employing DFT, which reproduces the measured band structure very accurately, we find the same exotic triple winding of the electron spin along the isoenergy contours of the surface state bands as reported in terms of a cubic Rashba effect for the Rh compounds. This proves the generic nature of the surface states and their universal properties in the considered LnT2Si2 compounds. With the ordering of the 4f moments at low temperatures, spin structure and surface band dispersion undergo significant changes induced by the exchange interaction. Pronounced asymmetries emerge in the band dispersion, which allow for the determination of the magnetisation axis. We demonstrate that this is even possible if spectral structures originating from different magnetic domains overlap in the spectra. Remarkably, we find respective asymmetries in EuIr2Si2, too, despite the almost trivalent, and thus non-magnetic Eu state at low temperatures. With complementary experimental techniques like x-ray absorption, x-ray linear and circular dichroism as well as by taking photoelectron diffraction into account, we demonstrate that in the surface Si–Ir–Si–Eu four-layer block Eu is nearly divalent and magnetically active. The associated Eu moments order ferromagnetically below 49K. In the case of Eu termination, we find that the 4f moments of the divalent Eu ions at the surface order ferromagnetically below 10K, too, and unveil thus another occurrence of 2D surface-related magnetism in the same non-magnetic bulk compound. Simultaneously, the mixed-valent properties of EuIr2Si2 and the strong temperature dependence of the mean Eu valency are clearly reflected in the electronic structure of the bulk in a smooth expansion of the Doughnut Fermi surface sheet with increasing temperature, which is interpreted as a band-filling effect. Our results show the high tunability of the electron spin by combining spin-orbit coupling and structural inversion asymmetry with the exchange interaction, which is at the heart of spintronics applications. The disclosure of controllable 2D magnetism at the surface of a non-magnetic bulk compound, which is enabled by an instability in the 4f shell, nominates valence fluctuating 4f compounds, especially with Eu and Sm, to be promising candidates for fundamental studies and applications. Our study moreover demonstrates the richness and versatility of 4f physics that may differ significantly at the surface and in the bulk.:1. Introduction 2. Preliminary Studies 2.1. Short introduction to lanthanides and 4f physics 2.2. LnT2Si2 compounds 3. Foundations 3.1. Band structure 3.2. Bulk states, surface states and surface resonances 3.3. The principles of photoelectron spectroscopy 3.4. Angle-resolved photoelectron spectroscopy 3.5. Photoabsorption and resonant photoelectron spectroscopy 3.6. X-ray absorption spectroscopy 3.6.1. X-ray magnetic circular dichroism 3.6.2. X-ray magnetic linear dichroism 3.7. Photoelectron diffraction 3.8. Synchrotron and synchrotron radiation 3.9. Density functional theory 4. Methods 4.1. Experimental details 4.2. DFT calculations 5. GdIr2Si2 5.1. Introduction 5.2. Results and discussion 5.2.1. Paramagnetic phase 5.2.2. Magnetically ordered phase 5.3. Summary 6. EuIr2Si2 6.1. Introduction 6.2. Results and discussion 6.2.1. Photoemission from the Eu 4f shell 6.2.2. ARPES on the Si-terminated surface 6.2.3. X-ray magnetic linear and circular dichroism 6.2.4. Eu termination 6.2.5. Determination of the mean Eu valency in the subsurface layers 6.2.6. Bulk properties 6.3. Summary 7. Conclusion / Die Suche nach neuartigen Technologien wie spinbasierte Elektronik sowie nach geeigneten Materialien für entsprechende Bauteile erfordert ein tiefgreifendes Verständnis der Wechselwirkungen des Elektronenspins und damit verbundener Materialeigenschaften. Mit der zunehmenden Miniaturisierung von Bauteilen gewinnen in diesem Zusammenhang auch Oberflächenphänomene zunehmend an Bedeutung. In dieser Arbeit untersuchen wir die elektronischen und magnetischen Eigenschaften quasizweidimensionaler elektronischer Zustände an metallischen Oberflächen unter dem Einfluss des Rashba-Effekts und der Austauschwechselwirkung mit lokalisierten 4f Momenten, die bei tiefen Temperaturen magnetisch ordnen. Dabei liegt die Besonderheit der untersuchten Systeme darin, dass beide Wechselwirkungen von vergleichbarer Stärke sind. Dieser Fall ist in der Fachliteratur bislang unterrepräsentiert. Unser Modellsystem ist die (001)-Oberfläche intermetallischer LnIr2Si2 Verbindungen mit ThCr2Si2 Struktur, wobei Ln ein Lanthanoidenelement darstellt. Dabei führen wir die langjährige und systematische Untersuchung von LnT2Si2 Verbindungen mit T = Rh fort, in denen die Rashba-artige Spin-Bahn-Kopplung ungefähr 100-mal schwächer als die Austauschwechselwirkung ist. Mit Hilfe von winkelaufgelöster Photoelektronenspektroskopie (ARPES) und Dichtefunktionaltheorie (DFT) erkunden wir mit GdIr2Si2 und EuIr2Si2 zwei Vertreter der LnT2Si2 Familie, die beide durch die Insensibilität der 4f Schale gegenüber dem Kristallfeld ausgezeichnet sind. Zugleich haben sie grundsätzlich verschiedene Volumeneigenschaften. GdIr2Si2 ist ein robuster Volumenantiferromagnet mit einer hohen Ordnungstemperatur von 87K, wohingegen EuIr2Si2 eine gemischtvalente Verbindung mit einem nicht-magnetischen Volumengrundzustand ist. Die mittlere Eu Valenz ist stark temperaturabhängig, sie ändert sich kontinuierlich von einer nahezu zweiwertigen Konfiguration bei Raumtemperatur zu einem beinahe dreiwertigen, nicht-magnetischen Eu Zustand unterhalb von _ 50K. Die Untersuchung der Oberflächenzustände in beiden Verbindungen zeigt, dass die Stärke der Rashba-artigen Spin-Bahn-Kopplung gegenüber den isoelektronischen Rh Verbindungen erheblich zunimmt. Dies spiegelt sich in einer riesigen Aufspaltung der Oberflächenbänder wider und unterstreicht die Bedeutung der atomaren Spin-Bahn-Kopplung in Elementen mit großer Kernzahl Z für die Stärke des Rashba-Effekts. Unsere DFT Rechnungen reproduzieren die gemessene Bandstruktur mit hoher Genauigkeit und offenbaren dieselbe Dreifachwindung des Spins entlang der Konturen konstanter Energie, die schon als kubischer Rashba-Effekt in den Rh Verbindungen beobachtet wurde. Hierin zeigt sich das allgemeingültige Wesen der Oberflächenzustände und deren universelle Eigenschaften in den betrachteten LnT2Si2 Verbindungen. Das Ordnen der 4f Momente bei niedrigen Temperaturen führt zu starken Veränderungen in der Spinstruktur und der Dispersion der Oberflächenbänder durch die einsetzende Austauschwechselwirkung. In der Bandstruktur bilden sich starke Asymmetrien, aus denen die Magnetisierungsachse bestimmt werden kann. Wir zeigen, dass dies sogar dann noch möglich ist, wenn sich spektrale Strukturen überlagern, die von unterschiedlichen magnetischen Domänen stammen. Besonders bemerkenswert ist, dass entsprechende Asymmetrien auch in EuIr2Si2 auftreten, trotz des nahezu dreiwertigen und damit nicht-magnetischen Eu bei tiefen Temperaturen. Mit komplementären experimentellen Methoden wie Röntgenabsorption, linearem und zirkularem Röntgendichroismus als auch durch die Berücksichtigung von Beugungseffekten in der Photoelektronenspektroskopie zeigen wir, dass Eu im Si–Ir–Si–Eu Oberflächenblock beinahe zweiwertig und magnetisch aktiv ist. Die zugehörigen Eu Momente ordnen unterhalb von 49K ferromagnetisch. Im Fall der Eu-Terminierung stellen wir fest, dass auch die 4f Momente der zweiwertigen Eu-Ionen an der Oberfläche unterhalb von 10K ferromagnetisch geordnet sind, und enthüllen damit ein weiteres Vorkommen zweidimensionalen, oberflächenbezogenen Magnetismus in derselben, nichtmagnetischen Volumenverbindung. Gleichzeitig spiegeln sich die gemischtvalenten Eigenschaften von EuIr2Si2 deutlich in der elektronischen Volumenbandstruktur in einer kontinuierlichen Ausdehnung der Doughnut-Fermifläche mit steigender Temperatur wider. Dies interpretieren wir als Bandfüllungseffekt. Unsere Ergebnisse zeigen die hohe Einstellbarkeit des Elektronenspins durch die Kombination von Spin-Bahn-Kopplung und struktureller Inversionsasymmetrie mit der Austauschwechselwirkung, was die Grundlage für Anwendungen in der spinbasierten Elektronik bildet. Die Enthüllung von kontrollierbarem, zweidimensionalem Magnetismus an der Oberfläche einer Verbindung mit instabiler 4f Schale, die im Volumen nicht-magnetisch ist, nominiert gemischtvalente 4f Verbindungen, insbesondere mit Eu und Sm, als vielversprechende Kandidaten für Grundlagenforschung und Anwendungen. Unsere Studie zeigt zudem den Reichtum und die Vielseitigkeit von 4f Systemen, deren Eigenschaften sich an der Oberfläche deutlich vom Volumen unterscheiden können.:1. Introduction 2. Preliminary Studies 2.1. Short introduction to lanthanides and 4f physics 2.2. LnT2Si2 compounds 3. Foundations 3.1. Band structure 3.2. Bulk states, surface states and surface resonances 3.3. The principles of photoelectron spectroscopy 3.4. Angle-resolved photoelectron spectroscopy 3.5. Photoabsorption and resonant photoelectron spectroscopy 3.6. X-ray absorption spectroscopy 3.6.1. X-ray magnetic circular dichroism 3.6.2. X-ray magnetic linear dichroism 3.7. Photoelectron diffraction 3.8. Synchrotron and synchrotron radiation 3.9. Density functional theory 4. Methods 4.1. Experimental details 4.2. DFT calculations 5. GdIr2Si2 5.1. Introduction 5.2. Results and discussion 5.2.1. Paramagnetic phase 5.2.2. Magnetically ordered phase 5.3. Summary 6. EuIr2Si2 6.1. Introduction 6.2. Results and discussion 6.2.1. Photoemission from the Eu 4f shell 6.2.2. ARPES on the Si-terminated surface 6.2.3. X-ray magnetic linear and circular dichroism 6.2.4. Eu termination 6.2.5. Determination of the mean Eu valency in the subsurface layers 6.2.6. Bulk properties 6.3. Summary 7. Conclusion
140

Superfluids of Fermions in Spin-Orbit Coupled Systems and Photons inside a Cavity

Yu, Yi-Xiang 11 December 2015 (has links)
This dissertation introduces some new properties of both superfluid phases of fermions with spin-orbit coupling (SOC) and superradiant phases of photons in an optical cavity. The effects of SOC on the phase transition between normal and superfluid phase are revealed; an unconventional crossover driven by SOC from the Bardeen-Cooper-Schrieffer (BCS) state to the Bose-Einstein condensate (BEC) state is verified in three different systems; and two kinds of excitations, a Goldstone mode and a Higgs mode, are demonstrated to occur in a quantum optical system. We investigate the BCS superfluid state of two-component atomic Fermi gases in the presence of three kinds of SOCs. We find that SOC drives a class of BCS to BEC crossover that is different from the conventional one without SOC. Here, we extend the concepts of the coherence length and Cooper-pair size in the absence of SOC to Fermi systems with SOC. We study the dependence of chemical potential, coherence length, and Cooper-pair size on the SOC strength and the scattering length in three dimensions (3D) (or the twobody binding energy in two dimensions (2D)) for three attractively interacting Fermi gases with 3D Rashba, 3D Weyl, and 2D Rashba SOC respectively. By adding a population imbalance to a Fermi gas with Rashba-type SOC, we also map out the finite-temperature phase diagram. Due to a competition between SOC and population imbalance, the finite-temperature phase diagram reveals a large variety of new features, including the expanding of the superfluid state regime and the shrinking of both the phase separation and the normal regimes. We find that the tricritical point moves toward a regime of low temperature, high magnetic field, and high polarization as the SOC strength increases. Besides Fermi fluids, this dissertation also gives a new angle of view on the superradiant phase in the Dicke model. Here, we demonstrate that Goldstone and Higgs modes can be observed in an optical system with only a few atoms inside a cavity. The model we study is the U(1)/Z2 Dicke model with N qubits (two-level atoms) coupled to a single photon mode.

Page generated in 0.0394 seconds