Spelling suggestions: "subject:"epinal core - bounds anda injuries"" "subject:"epinal core - bounds ando injuries""
61 |
The Effects of Yoga Therapy on the Quality of Life for a Paraplegic IndividualPurdy, Allison Renee 31 July 2012 (has links)
The purpose of this study was to document the effects that a regular yoga therapy practice has on the quality of life for a paraplegic individual. Due to the unique nature of spinal cord injury (SCI), this was a case study with one participant. For 5 weeks the subject practiced a standardized yoga routine three times a week with a yoga teacher, receiving private instruction. Interview questions were asked before and after the intervention to document the participant's quality of life. Each week, the subject completed a modified SF-36 questionnaire as well as Cohen's Perceived Stress Survey. Perceived pain and perceived stress were the two primary variables monitored in the study. The results of this study demonstrated a slight reduction in perceived stress, a reduction in perceived pain, and an improvement in overall quality of life. Additionally, the subject increased her strength significantly from the beginning to the end of the study. Based on the findings in this study, it appears that a regular adapted yoga routine is beneficial for paraplegic individuals.
|
62 |
Regeneration and plasticity of descending propriospinal neurons after transplantation of Schwann cells overexpressing glial cell line-derived neurotrophic factor following thoracic spinal cord injury in adult ratsDeng, Lingxiao 18 May 2015 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / After spinal cord injury (SCI), poor axonal regeneration of the central nervous system, which mainly attributed to glial scar and low intrinsic regenerating capacity of severely injured neurons, causes limited functional recovery. Combinatory strategy has been applied to target multiple mechanisms. Schwann cells (SCs) have been explored as promising donors for transplantation to promote axonal regeneration. Among the central neurons, descending propriospinal neurons (DPSN) displayed the impressive regeneration response to SCs graft. Glial cell line-derived neurotrophic factor (GDNF), which receptor is widely expressed in nervous system, possesses the ability to promote neuronal survival, axonal regeneration/sprouting, remyelination, synaptic formation and modulate the glial response.
We constructed a novel axonal permissive pathway in rat model of thoracic complete transection injury by grafting SCs over-expressing GDNF (SCs-GDNF) both inside and caudal to the lesion gap. Behavior evaluation and histological analyses have been applied to this study. Our results indicated that tremendous DPSN axons as well as brain stem axons regenerated across the lesion gap back to the caudal spinal cord. In addition to direct promotion on axonal regeneration, GDNF also significantly improved the astroglial environment around the lesion. These regenerations caused motor functional recovery. The dendritic plasticity of axotomized DPSN also contributed to the functional recovery. We applied a G-mutated rabies virus (G-Rabies) co-expressing green fluorescence protein (GFP) to reveal Golgi-like dendritic morphology of DPSNs and its response to axotomy injury and GDNF treatment. We also investigated the neurotransmitters phenotype of FluoroGold (FG) labeled DPSNs. Our results indicated that over 90 percent of FG-labeled DPSNs were glutamatergic neurons. DPSNs in sham animals had a predominantly dorsal-ventral distribution of dendrites. Transection injury resulted in alterations in the dendritic distribution, with dorsal-ventral retraction and lateral-medial extension of dendrites. Treatment with GDNF significantly increased the terminal dendritic length of DPSNs. The density of spine-like structures was increased after injury and treatment with GDNF enhanced this effect.
|
63 |
Sistema para sincronização automática de estimulação elétrica no tratamento de insuficiência respiratória em pessoas com lesão medularCosta, Taisa Daiana da 30 April 2015 (has links)
CAPES / A insuficiência respiratória gerada pela lesão medular, em pessoas com tetraplegia e paraplegia torácica alta, tem sido uma das principais causas de morte desses indivíduos. A paralisação, total ou parcial, dos músculos abdominais e do diafragma dificulta a produção de tosse e diminui o volume corrente da ventilação. Este problema
pode ser amenizado por meio do tratamento com estimulação elétrica funcional transcutânea (EEFT), na musculatura diafragmática e abdominal, sincronizada com a respiração espontânea. Poucos estudos têm sido direcionados a esta área e foi constatado que é de grande interesse científico que seja desenvolvido um sistema
capaz de automaticamente sincronizar a estimulação elétrica com os eventos de inspiração (estimulação diafragmática) e expiração (estimulação abdominal). Por isso, nesta dissertação, desenvolveu-se um sistema de aquisição de sinal respiratório e detecção dos eventos de inspiração e expiração para sincronismo da EEFT durante a respiração tranquila. O sistema emprega uma cinta elástica acoplada a uma célula de carga baseada em strain gauges para a aquisição do sinal respiratório. Um algoritmo, baseado em análise estatística do sinal, foi desenvolvido para a detecção das fases de inspiração e expiração.Testes foram realizados em oito voluntários hígidos. A cinta foi posicionada na região da última costela, e sinais foram adquiridos com o auxílio de um osciloscópio digital. Um fisioterapeuta ajudou na análise dos sinais. Foi realizada a contagem de inspirações e expirações detectadas corretamente. O resultado dos testes alcançou a taxa de 82% de acerto na detecção dos eventos inspiratórios, e 96% para os eventos expiratórios. Os resultados indicam que o sistema desenvolvido é eficiente para a aquisição de sinais respiratórios e o algoritmo criado pode propiciar a sincronização da EEFT, com o paciente tratado em posição quase estática. / The respiratory failure, caused by spinal cord injury in people with high thoracic paraplegia and tetraplegia, has been the major cause of death for those individuals. The total or partial paralysis of the abdominal muscles and the diaphragm hinders the production of cough and decreases tidal volume. This problem can be alleviated by treatment with transcutaneous functional electrical stimulation (TFES), on diaphragm and abdominal muscles synchronized with the spontaneous respiration. Few studies have been conducted on this matter, and it was found that is of great scientific interest the development of a system capable of automatically triggering the electrical
stimulation with inspiration (diaphragmatic stimulation) and expiration events (abdominal stimulation). Therefore, in this work, a respiratory signal acquisition system was developed for the detection of inspiration and expiration events for triggering the electrical stimulation during quiet breathing. The system employs an elastic belt attached to a load cell based on strain gauges for acquiring the respiratory signal. An algorithm based on signal statistical analysis was developed for the detection of inspiration and expiration events. Tests were carried out in eight healthy volunteers. The belt was positioned at the last rib region, and signals were obtained with the aid of a digital oscilloscope. A physical therapist helped in the analysis of the signals by counting the inspiratory and expiratory events. The results reached the accuracy of 82% in the detection of inspiratory events, and 96% for expiratory events. The results indicate that the developed system is effective for the acquisition of respiratory signals
and the created algorithm can provide synchronization of TFES with the patient in quasi-static situation during treatment.
|
64 |
Detecção de fadiga neuromuscular em pessoas com lesão medular completa utilizando transformada waveletKrueger, Eddy 26 September 2014 (has links)
CNPq / Introdução: As pessoas com lesão medular (LM) podem ter seus músculos paralisados ativados por meio da estimulação elétrica funcional (FES) sobre vias neurais presentes próximas à pele. Estas estimulações elétricas são importantes para a recuperação do trofismo neuromuscular ou durante o controle de movimento por próteses neurais. No entanto, ao longo da aplicação da FES, a fadiga ocorre, diminuindo a eficiência da contração, principalmente devido à hipotrofia neuromuscular presente nessa população. A aquisição da vibração das fibras musculares como indicador de fadiga é registrada por meio da técnica de mecanomiografia (MMG), que não sofre interferências elétricas decorrentes da aplicação da FES. Objetivo: Caracterizar a vibração do músculo reto femoral durante protocolo de fadiga neuromuscular eletricamente evocada em pessoas com lesão medular completa. Método: 24 membros (direito e esquerdo) de 15 participantes (idade: 27±5 anos) do sexo masculino (A e B na American Spinal Injury Impairment Scale) foram selecionados. Um estimulador elétrico operando como fonte de tensão, desenvolvido especialmente para pesquisa, foi configurado com: freqüência de pulso em 1 kHz (20% de ciclo de trabalho) e trem de pulsos (modulação) em 70 Hz (20% período ativo). O sinal triaxial [X (transversal), Y (longitudinal) e Z (perpendicular)] da MMG foi processado com filtro Butterworth de terceira ordem e banda passante entre 5 e 50 Hz. Previamente ao protocolo, a tensão de saída do estimulador foi incrementada (~3 V/s evitando-se a adaptação/habituação dos motoneurônios) até alcançar a extensão máxima eletricamente estimulada (EMEE) da articulação do joelho. Uma célula de carga foi usada para registrar a resposta de força, onde após a sua colocação, a intensidade da FES necessária para alcançar a EMEE foi aplicada e registrada pela célula de carga como 100% da força (F100%). Durante o protocolo de fadiga neuromuscular, a intensidade do estímulo foi incrementada durante o controle para manter a força em F100%. Quatro instantes (I - IV) foram selecionados entre F100% e a incapacidade da FES manter a resposta de força acima de 30% (F30%). O sinal foi processado nos domínios temporal (energia), espectral (frequência mediana) e wavelet (temporal-espectral com doze bandas de frequência entre 5 e 53 Hz). Os dados extraídos foram normalizados pelo instante inicial (I) gerando unidades arbitrárias (u.a.), e testados com estatística não paramétrica. Resultados: A frequência mediana não apresentou significância estatística. Em relação aos eixos de deslocamento da MMG, o eixo transversal mostrou o maior número de resultados estatisticamente significantivos. A energia da vibração das fibras musculares (domínio temporal) indicou diminuição entre os instantes I (músculo fresco) e II (pré-fadiga), como também entre os instantes I e IV (fadigado) com redução significativa. O domínio wavelet teve como foco o eixo transversal, especialmente as bandas de frequência de 13, 16, 20, 25 e 35 Hz, por terem indicado redução significativa durante a fadiga neuromuscular; principalmente, a banda de 25 Hz, que indicou redução significativa entre o instante I (valor da mediana dos dados de 0,53 u.a.) e os demais instantes [II (0,30 u.a), III (0,28 u.a.) e IV (0,24 u.a.)]. Conclusão: A fadiga neuromuscular é caracterizada pela redução da energia do sinal no eixo de deslocamento transversal (X) da vibração do músculo reto femoral, em pessoas com lesão medular completa, tanto no domínio temporal quanto principalmente no domínio wavelet, sendo a banda de frequência de 25 Hz a mais relevante, porque sua energia diminui com a ocorrência da fadiga neuromuscular. Estes achados abrem a possibilidade de aplicação em sistemas de malha fechada durante procedimentos de reabilitação física utilizando FES ou no controle de próteses neurais. / Introduction: People with spinal cord injury (SCI) may have the paralyzed muscles activated through functional electrical stimulation (FES) on neural pathways present below the skin. These electrical stimulations are important to restore the neuromuscular trophism or during the movement control using neural prostheses. However, prolonged FES application causes fatigue, which decreases the contraction strength, mainly due the neuromuscular hypotrophy in this population. The acquisition of myofibers’ vibration is recognized by mechanomyography (MMG) system and does not suffer electrical interference from the FES system. Objective: To characterize the rectus femoris muscle vibration during electrically evoked neuromuscular fatigue protocol in complete spinal cord injury subjects. Methods: As sample, 24 limbs (right and left) from 15 male participants (age: 27±5 y.o.) and ranked as A and B according to American Spinal Injury Impairment Scale) were selected. An electrical stimulator operating as voltage source, specially developed for research, was configured as: pulse frequency set to 1 kHz (20% duty cycle) and burst (modulating) frequency set to 70 Hz (20% active period). The triaxial [X (transverse), Y (longitudinal) and Z (perpendicular)] MMG signal of rectus femoris muscle was processed with a third-order 5-50 Hz bandpass Butterworth filter. A load cell was used to register the force. The stimulator output voltage was increased (~3 V/s to avoid motoneuron adaptation/habituation) until the maximal electrically-evoked extension (MEEE) of the knee joint. After the load cell placement, the stimuli magnitude required to reach MEEE was applied and registered by the load cell as muscular F100% response. Stimuli intensity was increased during the control to keep the force in F100%. Four instants (I - IV) were selected from F100% up to the inability to keep the FES response force above 30% (F30%). The signal was processed in temporal (energy), spectral (median frequency) and wavelet (temporal-spectral with twelve band frequencies between 5 and 53 Hz) domains. All data were normalized by initial instant, creating arbitrary units (a.u.), and non-parametric tests were applied. Results: The median frequency did not show statistical significance. Regarding the MMG axes, the transverse axis showed most statistical differences. The MMG energy (temporal domain) indicates the decrease between the instants I (unfatigued) and II (pre-fatigue), as well as instants I and IV (fatigued). The wavelet domain focused on the transverse axis, especially on 13, 16, 20, 25 and 35 Hz frequency bands, for having shown significant reduction proven during neuromuscular fatigue. In focus on 25 Hz band frequency that showed a constant decrease between instants I (median value from data de 0.53 a.u.) with subsequent instants [II (0.30 a.u.), III (0.28 a.u.) and IV (0.24 a.u.). Conclusion: Neuromuscular fatigue is characterized by energy decrease in MMG X-axis (transverse) signal of vibration on the rectus femoris muscle for complete spinal cord injured subjects, in the temporal domain but mainly in the wavelet domain. The 25 Hz is the most important band frequency because its energy decreases with neuromuscular fatigue. These findings open the possibility of application in closed-loop systems during physical rehabilitation procedures using FES or in the control of neural prostheses.
|
65 |
Sistema para sincronização automática de estimulação elétrica no tratamento de insuficiência respiratória em pessoas com lesão medularCosta, Taisa Daiana da 30 April 2015 (has links)
CAPES / A insuficiência respiratória gerada pela lesão medular, em pessoas com tetraplegia e paraplegia torácica alta, tem sido uma das principais causas de morte desses indivíduos. A paralisação, total ou parcial, dos músculos abdominais e do diafragma dificulta a produção de tosse e diminui o volume corrente da ventilação. Este problema
pode ser amenizado por meio do tratamento com estimulação elétrica funcional transcutânea (EEFT), na musculatura diafragmática e abdominal, sincronizada com a respiração espontânea. Poucos estudos têm sido direcionados a esta área e foi constatado que é de grande interesse científico que seja desenvolvido um sistema
capaz de automaticamente sincronizar a estimulação elétrica com os eventos de inspiração (estimulação diafragmática) e expiração (estimulação abdominal). Por isso, nesta dissertação, desenvolveu-se um sistema de aquisição de sinal respiratório e detecção dos eventos de inspiração e expiração para sincronismo da EEFT durante a respiração tranquila. O sistema emprega uma cinta elástica acoplada a uma célula de carga baseada em strain gauges para a aquisição do sinal respiratório. Um algoritmo, baseado em análise estatística do sinal, foi desenvolvido para a detecção das fases de inspiração e expiração.Testes foram realizados em oito voluntários hígidos. A cinta foi posicionada na região da última costela, e sinais foram adquiridos com o auxílio de um osciloscópio digital. Um fisioterapeuta ajudou na análise dos sinais. Foi realizada a contagem de inspirações e expirações detectadas corretamente. O resultado dos testes alcançou a taxa de 82% de acerto na detecção dos eventos inspiratórios, e 96% para os eventos expiratórios. Os resultados indicam que o sistema desenvolvido é eficiente para a aquisição de sinais respiratórios e o algoritmo criado pode propiciar a sincronização da EEFT, com o paciente tratado em posição quase estática. / The respiratory failure, caused by spinal cord injury in people with high thoracic paraplegia and tetraplegia, has been the major cause of death for those individuals. The total or partial paralysis of the abdominal muscles and the diaphragm hinders the production of cough and decreases tidal volume. This problem can be alleviated by treatment with transcutaneous functional electrical stimulation (TFES), on diaphragm and abdominal muscles synchronized with the spontaneous respiration. Few studies have been conducted on this matter, and it was found that is of great scientific interest the development of a system capable of automatically triggering the electrical
stimulation with inspiration (diaphragmatic stimulation) and expiration events (abdominal stimulation). Therefore, in this work, a respiratory signal acquisition system was developed for the detection of inspiration and expiration events for triggering the electrical stimulation during quiet breathing. The system employs an elastic belt attached to a load cell based on strain gauges for acquiring the respiratory signal. An algorithm based on signal statistical analysis was developed for the detection of inspiration and expiration events. Tests were carried out in eight healthy volunteers. The belt was positioned at the last rib region, and signals were obtained with the aid of a digital oscilloscope. A physical therapist helped in the analysis of the signals by counting the inspiratory and expiratory events. The results reached the accuracy of 82% in the detection of inspiratory events, and 96% for expiratory events. The results indicate that the developed system is effective for the acquisition of respiratory signals
and the created algorithm can provide synchronization of TFES with the patient in quasi-static situation during treatment.
|
66 |
Detecção de fadiga neuromuscular em pessoas com lesão medular completa utilizando transformada waveletKrueger, Eddy 26 September 2014 (has links)
CNPq / Introdução: As pessoas com lesão medular (LM) podem ter seus músculos paralisados ativados por meio da estimulação elétrica funcional (FES) sobre vias neurais presentes próximas à pele. Estas estimulações elétricas são importantes para a recuperação do trofismo neuromuscular ou durante o controle de movimento por próteses neurais. No entanto, ao longo da aplicação da FES, a fadiga ocorre, diminuindo a eficiência da contração, principalmente devido à hipotrofia neuromuscular presente nessa população. A aquisição da vibração das fibras musculares como indicador de fadiga é registrada por meio da técnica de mecanomiografia (MMG), que não sofre interferências elétricas decorrentes da aplicação da FES. Objetivo: Caracterizar a vibração do músculo reto femoral durante protocolo de fadiga neuromuscular eletricamente evocada em pessoas com lesão medular completa. Método: 24 membros (direito e esquerdo) de 15 participantes (idade: 27±5 anos) do sexo masculino (A e B na American Spinal Injury Impairment Scale) foram selecionados. Um estimulador elétrico operando como fonte de tensão, desenvolvido especialmente para pesquisa, foi configurado com: freqüência de pulso em 1 kHz (20% de ciclo de trabalho) e trem de pulsos (modulação) em 70 Hz (20% período ativo). O sinal triaxial [X (transversal), Y (longitudinal) e Z (perpendicular)] da MMG foi processado com filtro Butterworth de terceira ordem e banda passante entre 5 e 50 Hz. Previamente ao protocolo, a tensão de saída do estimulador foi incrementada (~3 V/s evitando-se a adaptação/habituação dos motoneurônios) até alcançar a extensão máxima eletricamente estimulada (EMEE) da articulação do joelho. Uma célula de carga foi usada para registrar a resposta de força, onde após a sua colocação, a intensidade da FES necessária para alcançar a EMEE foi aplicada e registrada pela célula de carga como 100% da força (F100%). Durante o protocolo de fadiga neuromuscular, a intensidade do estímulo foi incrementada durante o controle para manter a força em F100%. Quatro instantes (I - IV) foram selecionados entre F100% e a incapacidade da FES manter a resposta de força acima de 30% (F30%). O sinal foi processado nos domínios temporal (energia), espectral (frequência mediana) e wavelet (temporal-espectral com doze bandas de frequência entre 5 e 53 Hz). Os dados extraídos foram normalizados pelo instante inicial (I) gerando unidades arbitrárias (u.a.), e testados com estatística não paramétrica. Resultados: A frequência mediana não apresentou significância estatística. Em relação aos eixos de deslocamento da MMG, o eixo transversal mostrou o maior número de resultados estatisticamente significantivos. A energia da vibração das fibras musculares (domínio temporal) indicou diminuição entre os instantes I (músculo fresco) e II (pré-fadiga), como também entre os instantes I e IV (fadigado) com redução significativa. O domínio wavelet teve como foco o eixo transversal, especialmente as bandas de frequência de 13, 16, 20, 25 e 35 Hz, por terem indicado redução significativa durante a fadiga neuromuscular; principalmente, a banda de 25 Hz, que indicou redução significativa entre o instante I (valor da mediana dos dados de 0,53 u.a.) e os demais instantes [II (0,30 u.a), III (0,28 u.a.) e IV (0,24 u.a.)]. Conclusão: A fadiga neuromuscular é caracterizada pela redução da energia do sinal no eixo de deslocamento transversal (X) da vibração do músculo reto femoral, em pessoas com lesão medular completa, tanto no domínio temporal quanto principalmente no domínio wavelet, sendo a banda de frequência de 25 Hz a mais relevante, porque sua energia diminui com a ocorrência da fadiga neuromuscular. Estes achados abrem a possibilidade de aplicação em sistemas de malha fechada durante procedimentos de reabilitação física utilizando FES ou no controle de próteses neurais. / Introduction: People with spinal cord injury (SCI) may have the paralyzed muscles activated through functional electrical stimulation (FES) on neural pathways present below the skin. These electrical stimulations are important to restore the neuromuscular trophism or during the movement control using neural prostheses. However, prolonged FES application causes fatigue, which decreases the contraction strength, mainly due the neuromuscular hypotrophy in this population. The acquisition of myofibers’ vibration is recognized by mechanomyography (MMG) system and does not suffer electrical interference from the FES system. Objective: To characterize the rectus femoris muscle vibration during electrically evoked neuromuscular fatigue protocol in complete spinal cord injury subjects. Methods: As sample, 24 limbs (right and left) from 15 male participants (age: 27±5 y.o.) and ranked as A and B according to American Spinal Injury Impairment Scale) were selected. An electrical stimulator operating as voltage source, specially developed for research, was configured as: pulse frequency set to 1 kHz (20% duty cycle) and burst (modulating) frequency set to 70 Hz (20% active period). The triaxial [X (transverse), Y (longitudinal) and Z (perpendicular)] MMG signal of rectus femoris muscle was processed with a third-order 5-50 Hz bandpass Butterworth filter. A load cell was used to register the force. The stimulator output voltage was increased (~3 V/s to avoid motoneuron adaptation/habituation) until the maximal electrically-evoked extension (MEEE) of the knee joint. After the load cell placement, the stimuli magnitude required to reach MEEE was applied and registered by the load cell as muscular F100% response. Stimuli intensity was increased during the control to keep the force in F100%. Four instants (I - IV) were selected from F100% up to the inability to keep the FES response force above 30% (F30%). The signal was processed in temporal (energy), spectral (median frequency) and wavelet (temporal-spectral with twelve band frequencies between 5 and 53 Hz) domains. All data were normalized by initial instant, creating arbitrary units (a.u.), and non-parametric tests were applied. Results: The median frequency did not show statistical significance. Regarding the MMG axes, the transverse axis showed most statistical differences. The MMG energy (temporal domain) indicates the decrease between the instants I (unfatigued) and II (pre-fatigue), as well as instants I and IV (fatigued). The wavelet domain focused on the transverse axis, especially on 13, 16, 20, 25 and 35 Hz frequency bands, for having shown significant reduction proven during neuromuscular fatigue. In focus on 25 Hz band frequency that showed a constant decrease between instants I (median value from data de 0.53 a.u.) with subsequent instants [II (0.30 a.u.), III (0.28 a.u.) and IV (0.24 a.u.). Conclusion: Neuromuscular fatigue is characterized by energy decrease in MMG X-axis (transverse) signal of vibration on the rectus femoris muscle for complete spinal cord injured subjects, in the temporal domain but mainly in the wavelet domain. The 25 Hz is the most important band frequency because its energy decreases with neuromuscular fatigue. These findings open the possibility of application in closed-loop systems during physical rehabilitation procedures using FES or in the control of neural prostheses.
|
67 |
Targeting acute phosphatase PTEN inhibition and investigation of a novel combination treatment with Schwann cell transplantation to promote spinal cord injury repair in ratsWalker, Chandler L. 02 April 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Human traumatic spinal cord injuries (SCI) are primarily incomplete contusion or compression injuries at the cervical spinal level, causing immediate local tissue damage and a range of potential functional deficits. Secondary damage exacerbates initial mechanical trauma and contributes to function loss through delayed cell death mechanisms such as apoptosis and autophagy. As such, understanding the dynamics of cervical SCI and related intracellular signaling and death mechanisms is essential.
Through behavior, Western blot, and histological analyses, alterations in phosphatase and tensin homolog (PTEN)/phosphatidylinositol-3-kinase (PI3K) signaling and the neuroprotective, functional, and mechanistic effects of administering the protein tyrosine phosphatase (PTP) inhibitor, potassium bisperoxo (picolinato) vanadium ([bpV[pic]) were analyzed following cervical spinal cord injury in rats. Furthermore, these studies investigated the combination of subacute Schwann cell transplantation with acute bpV(pic) treatment to identify any potential additive or synergistic benefits. Although spinal SC transplantation is well-studied, its use in combination with other therapies is necessary to complement its known protective and growth promoting characteristics.
v
The results showed 400 μg/kg/day bpV(pic) promoted significant tissue sparing, lesion reduction, and recovery of forelimb function post-SCI. To further clarify the mechanism of action of bpV(pic) on spinal neurons, we treated injured spinal neurons in vitro with 100 nM bpV(pic) and confirmed its neurprotection and action through inhibition of PTEN and promotion of PI3K/Akt/mammalian target of rapamycin (mTOR) signaling. Following bpV(pic) treatment and green fluorescent protein (GFP)-SC transplantation, similar results in neuroprotective benefits were observed. GFP-SCs alone exhibited less robust effects in this regard, but promoted significant ingrowth of axons, as well as vasculature, over 10 weeks post-transplantation. All treatments showed similar effects in forelimb function recovery, although the bpV and combination treatments were the only to show statistical significance over non-treated injury. In the following chapters, the research presented contributes further understanding of cellular responses following cervical hemi-contusion SCI, and the beneficial effects of bpV(pic) and SC transplantation therapies alone and in combination. In conclusion, this work provides a thorough overview of pathology and cell- and signal-specific mechanisms of survival and repair in a clinically relevant rodent SCI model.
|
68 |
The personal and embodied experiences of people living with a spinal cord injury in the or Tambo district municipality in the Eastern CapeMagenuka, Nkosazana Selina 11 1900 (has links)
The study was undertaken to deepen understanding of living with a spinal cord injury (SCI) in the rural communities of the Eastern Cape Province, South Africa (RSA). The OR Tambo District Municipality, which was selected for its accessibility to the researcher, is virtually rural, the infrastructure is poorly developed and there is low socio-economic activity in the rural areas of the old Transkei.
In the RSA services for management and rehabilitation of SCIs varies from province to province.
A Heideggerian phenomenological approach was used to interpret the meaning of living with SCI persons in a rural community. The purpose was to describe and interpret what being-in the-world as a spinal cord injured person meant to the particpants. A key assumption in phenomenology is that understanding human beings and their actions is best achieved through examination of human experiences. Experience, including experience with living with SCI, offers itself as a record of human encounters, the interface between persons and their world, and experience can only be understood in terms of background and the social context of the experience (Pateman & Johnson 2000: 51).
Phenomenological interviews with ten people living with SCI explored their experience. The overall goal was to increase awareness of their experiences of living with SCI, and to encourage incorporation of knowledge gained into nursing practice. The central question in the study was `What is it like to live with a spinal cord injury in a rural community? Data were analysed according to Heideggerian hermeneutic phenomenology.
Two main themes were identified, namely reconceptualising being-in-the-world as a person with a disability; and being-with-each-other: experiencing being excluded, objectified and marginalized. The participants engaged in a process of reconstructing their identities following the traumatic loss of sensory and motor functioning. Data reflect the social and economic context in which living with SCI is experienced. The respondents' life experiences were influenced by socio-political, economic and historical factors, namely geographic location, poor infrastructure, poverty, low educational status, and unemployment and the community at large. It was noted that participants experienced difficulties in several areas in their daily life realm; naming, coping with health and disability problems, family interactions and relationships, and non-accessibility of amenities, including their own dwellings. In addition, being a person living with an SCI in the rural communities of the OR Tambo District Municipality carries a high physical and social risk due to lack of resources. The inability to live up to generally expected social roles led to role dissatisfaction. There is an urgent need for social support to overcome the negative societal attitudes experienced. They are forced into isolation with a limited social life and are poorly integrated into the communities in which they live. Most of what the participants raised pointed towards inadequate preparation for the outside world. Therefore, a holistic approach to rehabilitation is recommended, as holism means addressing the physical, social, emotional and cognitive needs. Accordingly, the researcher developed guidelines for facilitating community integration.
In conclusion, understanding how people experience living with SCI in a rural community is an essential prerequisite to the development of appropriate strategies to facilitate community integration. / Health Studies / D. Litt et Phil (Health Studies)
|
69 |
Egpare se belewenis na 'n spinalekoordbesering van 'n egmaat / Couples experience after a spinal cord injury of a spouseSteyn, Yolinda 30 November 2008 (has links)
Text in Afrikaans / Indigenous literature about the experience of a couple, where one of the spouses experiences a spinal cord injury, is scarce in the frame of social work. The experience of 5 couples (10 participants), after a spinal cord injury of one of the spouses was researched in this qualitative study.
The aim of this research study is:
• to reconnoiter participants’ experience of a spinal cord injury of a spouse, through semi-structured interviews with a purposeful chosen sample
• to subject the research findings to a literature control
• to make recommendations about how spouses can support each other, as well as how professional people can support client systems, where one of the spouses experience a spinal cord injury
From the data it was determined that a spinal cord injury had significantly influenced the couples:
- emotions
- needs
- perceptions (origination of experiences)
Recommendations to couples as well as to professional people have been made. / Social Work / Thesis (M. Diac.)
|
70 |
The personal and embodied experiences of people living with a spinal cord injury in the or Tambo district municipality in the Eastern CapeMagenuka, Nkosazana Selina 11 1900 (has links)
The study was undertaken to deepen understanding of living with a spinal cord injury (SCI) in the rural communities of the Eastern Cape Province, South Africa (RSA). The OR Tambo District Municipality, which was selected for its accessibility to the researcher, is virtually rural, the infrastructure is poorly developed and there is low socio-economic activity in the rural areas of the old Transkei.
In the RSA services for management and rehabilitation of SCIs varies from province to province.
A Heideggerian phenomenological approach was used to interpret the meaning of living with SCI persons in a rural community. The purpose was to describe and interpret what being-in the-world as a spinal cord injured person meant to the particpants. A key assumption in phenomenology is that understanding human beings and their actions is best achieved through examination of human experiences. Experience, including experience with living with SCI, offers itself as a record of human encounters, the interface between persons and their world, and experience can only be understood in terms of background and the social context of the experience (Pateman & Johnson 2000: 51).
Phenomenological interviews with ten people living with SCI explored their experience. The overall goal was to increase awareness of their experiences of living with SCI, and to encourage incorporation of knowledge gained into nursing practice. The central question in the study was `What is it like to live with a spinal cord injury in a rural community? Data were analysed according to Heideggerian hermeneutic phenomenology.
Two main themes were identified, namely reconceptualising being-in-the-world as a person with a disability; and being-with-each-other: experiencing being excluded, objectified and marginalized. The participants engaged in a process of reconstructing their identities following the traumatic loss of sensory and motor functioning. Data reflect the social and economic context in which living with SCI is experienced. The respondents' life experiences were influenced by socio-political, economic and historical factors, namely geographic location, poor infrastructure, poverty, low educational status, and unemployment and the community at large. It was noted that participants experienced difficulties in several areas in their daily life realm; naming, coping with health and disability problems, family interactions and relationships, and non-accessibility of amenities, including their own dwellings. In addition, being a person living with an SCI in the rural communities of the OR Tambo District Municipality carries a high physical and social risk due to lack of resources. The inability to live up to generally expected social roles led to role dissatisfaction. There is an urgent need for social support to overcome the negative societal attitudes experienced. They are forced into isolation with a limited social life and are poorly integrated into the communities in which they live. Most of what the participants raised pointed towards inadequate preparation for the outside world. Therefore, a holistic approach to rehabilitation is recommended, as holism means addressing the physical, social, emotional and cognitive needs. Accordingly, the researcher developed guidelines for facilitating community integration.
In conclusion, understanding how people experience living with SCI in a rural community is an essential prerequisite to the development of appropriate strategies to facilitate community integration. / Health Studies / D. Litt et Phil (Health Studies)
|
Page generated in 0.1293 seconds