• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 14
  • 7
  • 7
  • 6
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Managing a real-time massively-parallel neural architecture

Patterson, James Cameron January 2012 (has links)
A human brain has billions of processing elements operating simultaneously; the only practical way to model this computationally is with a massively-parallel computer. A computer on such a significant scale requires hundreds of thousands of interconnected processing elements, a complex environment which requires many levels of monitoring, management and control. Management begins from the moment power is applied and continues whilst the application software loads, executes, and the results are downloaded. This is the story of the research and development of a framework of scalable management tools that support SpiNNaker, a novel computing architecture designed to model spiking neural networks of biologically-significant sizes. This management framework provides solutions from the most fundamental set of power-on self-tests, through to complex, real-time monitoring of the health of the hardware and the software during simulation. The framework devised uses standard tools where appropriate, covering hardware up / down events and capacity information, through to bespoke software developed to provide real-time insight to neural network software operation across multiple levels of abstraction. With this layered management approach, users (or automated agents) have access to results dynamically and are able to make informed decisions on required actions in real-time.
12

Learning in spiking neural networks

Davies, Sergio January 2013 (has links)
Artificial neural network simulators are a research field which attracts the interest of researchers from various fields, from biology to computer science. The final objectives are the understanding of the mechanisms underlying the human brain, how to reproduce them in an artificial environment, and how drugs interact with them. Multiple neural models have been proposed, each with their peculiarities, from the very complex and biologically realistic Hodgkin-Huxley neuron model to the very simple 'leaky integrate-and-fire' neuron. However, despite numerous attempts to understand the learning behaviour of the synapses, few models have been proposed. Spike-Timing-Dependent Plasticity (STDP) is one of the most relevant and biologically plausible models, and some variants (such as the triplet-based STDP rule) have been proposed to accommodate all biological observations. The research presented in this thesis focuses on a novel learning rule, based on the spike-pair STDP algorithm, which provides a statistical approach with the advantage of being less computationally expensive than the standard STDP rule, and is therefore suitable for its implementation on stand-alone computational units. The environment in which this research work has been carried out is the SpiNNaker project, which aims to provide a massively parallel computational substrate for neural simulation. To support such research, two other topics have been addressed: the first is a way to inject spikes into the SpiNNaker system through a non-real-time channel such as the Ethernet link, synchronising with the timing of the SpiNNaker system. The second research topic is focused on a way to route spikes in the SpiNNaker system based on populations of neurons. The three topics are presented in sequence after a brief introduction to the SpiNNaker project. Future work could include structural plasticity (also known as synaptic rewiring); here, during the simulation of neural networks on the SpiNNaker system, axons, dendrites and synapses may be grown or pruned according to biological observations.
13

Error control with binary cyclic codes

Grymel, Martin-Thomas January 2013 (has links)
Error-control codes provide a mechanism to increase the reliability of digital data being processed, transmitted, or stored under noisy conditions. Cyclic codes constitute an important class of error-control code, offering powerful error detection and correction capabilities. They can easily be generated and verified in hardware, which makes them particularly well suited to the practical use as error detecting codes.A cyclic code is based on a generator polynomial which determines its properties including the specific error detection strength. The optimal choice of polynomial depends on many factors that may be influenced by the underlying application. It is therefore advantageous to employ programmable cyclic code hardware that allows a flexible choice of polynomial to be applied to different requirements. A novel method is presented in this thesis to realise programmable cyclic code circuits that are fast, energy-efficient and minimise implementation resources.It can be shown that the correction of a single-bit error on the basis of a cyclic code is equivalent to the solution of an instance of the discrete logarithm problem. A new approach is proposed for computing discrete logarithms; this leads to a generic deterministic algorithm for analysed group orders that equal Mersenne numbers with an exponent of a power of two. The algorithm exhibits a worst-case runtime in the order of the square root of the group order and constant space requirements.This thesis establishes new relationships for finite fields that are represented as the polynomial ring over the binary field modulo a primitive polynomial. With a subset of these properties, a novel approach is developed for the solution of the discrete logarithm in the multiplicative groups of these fields. This leads to a deterministic algorithm for small group orders that has linear space and linearithmic time requirements in the degree of defining polynomial, enabling an efficient correction of single-bit errors based on the corresponding cyclic codes.
14

Development and Evaluation of a Road Marking Recognition Algorithm implemented on Neuromorphic Hardware / Utveckling och utvärdering av en algoritm för att läsa av vägbanan, som implementeras på neuromorfisk hårdvara

Bou Betran, Santiago January 2022 (has links)
Driving is one of the most common and preferred forms of transport used in our actual society. However, according to studies, it is also one of the most dangerous. One solution to increase safety on the road is applying technology to automate and prevent avoidable human errors. Nevertheless, despite the efforts to obtain reliable systems, we have yet to find a reliable and safe enough solution for solving autonomous driving. One of the reasons is that many drives are done in conditions far from the ideal, with variable lighting conditions and fast-paced, unpredictable environments. This project develops and evaluates an algorithm that takes the input of dynamic vision sensors (DVS) and runs on neuromorphic spiking neural networks (SNN) to obtain a robust road lane tracking system. We present quantitative and qualitative metrics that evaluate the performance of lane recognition in low light conditions against conventional algorithms. This project is motivated by the main advantages of neuromorphic vision sensors: recognizing a high dynamic range and allowing a high-speed image capture. Another improvement of this system is the computational speed and power efficiency that characterize neuromorphic hardware based on spiking neural networks. The results obtained show a similar accuracy of this new algorithm compared to previous implementations on conventional hardware platforms. Most importantly, it accomplishes the proposed task with lower latency and computing power requirements than previous algorithms. / Att köra bil är ett av de vanligaste och mest populära transportsätten i vårt samhälle. Enligt forskningen är det också ett av de farligaste. En lösning för att öka säkerheten på vägarna är att med teknikens hjälp automatisera bilkörningen och på så sätt förebygga misstag som beror på den mänskliga faktorn. Trots ansträngningarna för att få fram tillförlitliga system har man dock ännu inte hittat en tillräckligt tillförlitlig och säker lösning för självkörande bilar. En av orsakerna till det är att många körningar sker under förhållanden som är långt ifrån idealiska, med varierande ljusförhållanden och oförutsägbara miljöer i höga hastigheter. I det här projektet utvecklar och utvärderar vi en algoritm som tar emot indata från dynamiska synsensorer (Dynamic Vision Sensors, DVS) och kör datan på neuromorfiska pulserande neuronnät (Spiking Neural Networks, SNN) för att skapa ett robust system för att läsa av vägbanan. Vi presenterar en kvantitativ och kvalitativ utvärdering av hur väl systemet läser av körbanans linjer i svagt ljus, och jämför därefter resultaten med dem för tidigare algoritmer. Detta projekt motiveras av de viktigaste fördelarna med neuromorfiska synsensorer: brett dynamiskt omfång och hög bildtagningshastighet. En annan fördel hos detta system är den korta beräkningstiden och den energieffektivitet som kännetecknar neuromorfisk hårdvara baserad på pulserande neuronnät. De resultat som erhållits visar att den nya algoritmen har en liknande noggrannhet som tidigare algoritmer på traditionella hårdvaruplattformar. I jämförelse med den traditionella tekniken, utför algoritmen i den föreliggande studien sin uppgift med kortare latenstid och lägre krav på processorkraft. / La conducción es una de las formas de transporte más comunes y preferidas en la actualidad. Sin embargo, diferentes estudios muestran que también es una de las más peligrosas. Una solución para aumentar la seguridad en la carretera es aplicar la tecnología para automatizar y prevenir los evitables errores humanos. No obstante, a pesar de los esfuerzos por conseguir sistemas fiables, todavía no hemos encontrado una solución suficientemente fiable y segura para resolver este reto. Una de las razones es el entorno de la conducción, en situaciones que distan mucho de las ideales, con condiciones de iluminación variables y entornos rápidos e imprevisibles. Este proyecto desarrolla y evalúa un algoritmo que toma la entrada de sensores de visión dinámicos (DVS) y ejecuta su computación en redes neuronales neuromórficas (SNN) para obtener un sistema robusto de seguimiento de carriles en carretera. Presentamos métricas cuantitativas y cualitativas que evalúan el rendimiento del reconocimiento de carriles en condiciones de poca luz, frente a algoritmos convencionales. Este proyecto está motivado por la validación de las ventajas de los sensores de visión neuromórficos: el reconocimiento de un alto rango dinámico y la captura de imágenes de alta velocidad. Otra de las mejoras que se espera de este sistema es la velocidad de procesamiento y la eficiencia energética que caracterizan al hardware neuromórfico basado en redes neuronales de impulsos. Los resultados obtenidos muestran una precisión similar entre el nuevo algoritmo en comparación con implementaciones anteriores en plataformas convencionales. Y lo que es más importante, realiza la tarea propuesta con menor latencia y requisitos de potencia de cálculo.

Page generated in 0.0232 seconds