Spelling suggestions: "subject:"spinons"" "subject:"opinons""
1 |
Magnetic field effects in low-dimensional quantum magnetsIaizzi, Adam 07 November 2018 (has links)
We present a comprehensive study of a low-dimensional spin-half quantum antiferromagnet, the J-Q model, in the presence of an external (Zeeman) magnetic field using numerical methods, chiefly stochastic series expansion quantum Monte Carlo with directed loop updates and quantum replica exchange. The J-Q model is a many-body Hamiltonian acting on a lattice of localized spin-half degrees of freedom; it augments the Heisenberg exchange with a four-spin interaction of strength Q. This model has been extensively studied at zero field, where the Q term drives a quantum phase transition from a Néel-like state to a valence-bond solid (a nonmagnetic state consisting of a long-range-ordered arrangement of local singlet bonds between sites). This transition is believed to be an example of deconfined quantum criticality, where the excitations are spinons—exotic spin-half bosons. We study the J-Q model in the presence of a magnetic field in both one and two dimensions. In one dimension, there is metamagnetism above a critical coupling ratio (Q/J)min. Metamagnetism is a first-order quantum phase transition characterized by discontinuities in the magnetization as a function of field (magnetization jumps). We derive an exact expression for (Q/J)min = 2/9, and show that the metamagnetism is caused by the onset of attractive interactions between magnons (flipped spins on a polarized background). We predict that the same mechanisms will produce metamagnetism in the unfrustrated antiferromagnetic J1-J2 model with anisotropy. Below (Q/J)min, the saturation transition is continuous and we show that it is governed by the expected zero-scale-factor universality. In two dimensions, we also find metamagnetism above a critical coupling ratio (Q/J)min=0.417, caused by the same mechanism as in the one-dimensional case. In two dimensions we also show evidence of an anomalous temperature dependence of specific heat arising from field-induced Bose-Einstein condensation of spinons at the deconfined quantum critical point. / 2019-11-06T00:00:00Z
|
2 |
Synthèse et études de cuprates de basse dimensionnalité à propriétés thermiques fortement anisotropes / Single crystal growth and study of low-dimensionnal cuprates with highly anisotropic heat transport propertiesBounoua, Dalila 12 December 2017 (has links)
Ce manuscrit porte sur l’étude de cuprates de basse dimensionnalité, les systèmes à chaînes de spins SrCuO₂ et Sr₂CuO₃. Un des intérêts de ces deux composés est qu’ils présentent des conductions thermiques fortement anisotropes. Celles-ci comportent une contribution magnétique due au transport de la chaleur via les excitations de spinons qui se manifeste uniquement dans la direction des chaînes de spins. Notre étude a pour objectif la mise en évidence des mécanismes qui gouvernent ces propriétés de transport, notamment à travers l’étude des interactions entre les spinons, les phonons et les défauts. Les interactions spinons (phonons)-défauts ont été sondées par l’introduction intentionnelle de dopants (1-2%) non-magnétiques sur le site du cuivre : Mg²⁺, Zn²⁺, Pd²⁺ ou Ni²⁺, ou encore par l’introduction d’éléments possédant des degrés d’oxydation différents sur le site du strontium : La³⁺ ou K⁺. Les composés ont été synthétisés sous leur forme monocristalline par la méthode de fusion de la zone solvante. Des caractérisations structurales, magnétiques et thermiques des composés purs et dopés ont été réalisées. Les spectres d’excitations magnétiques de ces cuprates ont été déterminés par diffusion inélastique de neutrons, spectroscopie RMN et spectroscopie de photoémission résolue en angle afin de révéler l’impact de la substitution. L’étude des spectres de phonons a également été réalisée par diffusion inélastique de neutrons. Les résultats de ces mesures sont corrélés aux propriétés de conduction thermique des composés purs et dopés.. / This manuscript deals with the study of low dimensional cuprates, namely, the spin chains systems SrCuO₂ and Sr₂CuO₃. These two compounds exhibit highly anisotropic thermal conduction properties along the spin-chains direction, where magnetic thermal conduction contributes to the heat transport process via spinon excitations. Our study aims to highlight the mechanisms that govern the heat transport properties, particularly through the study of the scattering channels involving spinon, phonon and defects. The spinon (phonon)–defect scattering was probed by the intentional introduction of nonmagnetic dopants (1-2%) on the copper site, by: Mg²⁺, Zn²⁺, Pd²⁺ or Ni²⁺, or by the introduction of elements carrying different oxidation level on the strontium site, by: La³⁺ or K⁺. Single crystals of the pure and doped materials have been grown by the travelling solvent floating zone method. The structural, magnetic and thermal characterizations of the pure and doped compounds were performed. The magnetic excitation spectra of the compounds were determined by inelastic neutron scattering, NMR spectroscopy, and angle resolved photoemission spectroscopy to reveal the impact of the substitution on the spin dynamics of the doped compounds. The study of phonon spectra has also been performed by inelastic neutron scattering. Results from inelastic neutron scattering have been correlated to the heat transport properties of the pristine and substituted materials.
|
3 |
Magnetic heat transport in one-dimensional quantum antiferromagnetsHlubek, Nikolai 20 June 2011 (has links) (PDF)
Fundamental conservation laws predict a dissipationless transport behavior in one-dimensional S=1/2 spin chains. This truly ballistic heat transport suggests anomalously large life times and mean free paths of the elementary excitations of the spin chain, spinons. Despite this rigorous prediction, in any real system, the transport is dissipative, due to the interaction of spinons with defects and phonons. Nevertheless, a promising large magnetic thermal conductivity \\kappa_{mag} has been observed in a few copper-oxide systems. Characteristic for these cuprate systems is a large exchange interaction J along the spin chain. However, due to the limited number and knowledge of the systems showing a large \\kappa_{mag}, it has been difficult, to identify overarching trends. The goal of this thesis therefore is twofold. First, to test new compounds for the appearance of magnetic heat transport and second, to broaden the understanding of the known compounds by studying the influence of various kinds of impurities.
In particular, three families of materials are studied. First, the thermal conductivity \\kappa(T) of the compounds TiOBr and TiOCl is investigated. Below room temperature the compounds undergo two phase transitions T_{c2} and T_{c1}. Above T_{c2} the compounds contain S=1/2 spin chains with J_{Cl}=676 K and J_{Br}=375 K respectively, formed by direct orbital overlap of the Ti-atoms. Below T_{c1} the chains dimerize to form a non-magnetic ground state. The thermal conductivity exhibits pronounced anomalies at T_{c2} and T_{c1} confirming the transitions being of second and first order respectively. Surprisingly, \\kappa(T) appears to be dominated by phonon heat conduction, since no indications of a significant magnetic contribution is found. This is in contrast to the expectation of a spin chain system. In this context possible scenarios to understand the unusual behavior of the thermal conductivity are discussed.
Second, two related materials, the single chain Sr_{2}CuO_{3} and the double chain SrCuO_{2} are investigated. In high purity samples huge magnetic heat conductivities and concomitantly, extremely large spinon mean free paths of >0.5 µm for Sr_{2}CuO_{3} and >1 µm for SrCuO_{2} are observed. This demonstrates that \\kappa_{mag} is only limited by extrinsic scattering processes, which is a clear signature of ballistic transport in the underlying spin model. Additionally, various subtle modifications of the spin chain are studied. Due to the large mean free path a pristine picture of the intrinsic incidents is expected. In particular, a chemical pressure is applied to the spin chain by doping SrCuO_{2} with Ca. This has a surprisingly strong effect on \\kappa_{mag}. Furthermore, the influence of magnetic Ni and non-magnetic Mg doping is studied for SrCuO_{2}. While Ni-doping has a large impact on the magnetic thermal conductivity, Mg-doping shows no influence. In order to clarify this surprising behavior, \\kappa_{mag} is compared to measurements of the single chain compound Sr_{2}CuO_{3}.
Third, the magnetic thermal conductivity of the spin chain material CaCu_{2}O_{3} doped with non-magnetic Zn impurities is studied. \\kappa_{mag} of the pure compound is linear up to room temperature, which is indicative of a T-independent scattering rate of the magnetic excitations. Both, magnitude and T-dependence of \\kappa_{mag} exhibit a very unusual doping dependence. At moderate Zn-doping the linear temperature dependence of \\kappa_{mag} is preserved and the absolute value of \\kappa_{mag} increases. A slight suppression of \\kappa_{mag} occurs only at high Zn doping, where, surprisingly, the T-dependence of \\kappa_{mag} changes from linearity to one with a higher power of T . In order to clarify this surprising behavior, the results are compared to a detailed study of the g-tensor of the impurities in the material by means of ESR experiments, which reveal a change of the impurity type with increasing Zn-content.
|
4 |
Magnetic heat transport in one-dimensional quantum antiferromagnetsHlubek, Nikolai 23 May 2011 (has links)
Fundamental conservation laws predict a dissipationless transport behavior in one-dimensional S=1/2 spin chains. This truly ballistic heat transport suggests anomalously large life times and mean free paths of the elementary excitations of the spin chain, spinons. Despite this rigorous prediction, in any real system, the transport is dissipative, due to the interaction of spinons with defects and phonons. Nevertheless, a promising large magnetic thermal conductivity \\kappa_{mag} has been observed in a few copper-oxide systems. Characteristic for these cuprate systems is a large exchange interaction J along the spin chain. However, due to the limited number and knowledge of the systems showing a large \\kappa_{mag}, it has been difficult, to identify overarching trends. The goal of this thesis therefore is twofold. First, to test new compounds for the appearance of magnetic heat transport and second, to broaden the understanding of the known compounds by studying the influence of various kinds of impurities.
In particular, three families of materials are studied. First, the thermal conductivity \\kappa(T) of the compounds TiOBr and TiOCl is investigated. Below room temperature the compounds undergo two phase transitions T_{c2} and T_{c1}. Above T_{c2} the compounds contain S=1/2 spin chains with J_{Cl}=676 K and J_{Br}=375 K respectively, formed by direct orbital overlap of the Ti-atoms. Below T_{c1} the chains dimerize to form a non-magnetic ground state. The thermal conductivity exhibits pronounced anomalies at T_{c2} and T_{c1} confirming the transitions being of second and first order respectively. Surprisingly, \\kappa(T) appears to be dominated by phonon heat conduction, since no indications of a significant magnetic contribution is found. This is in contrast to the expectation of a spin chain system. In this context possible scenarios to understand the unusual behavior of the thermal conductivity are discussed.
Second, two related materials, the single chain Sr_{2}CuO_{3} and the double chain SrCuO_{2} are investigated. In high purity samples huge magnetic heat conductivities and concomitantly, extremely large spinon mean free paths of >0.5 µm for Sr_{2}CuO_{3} and >1 µm for SrCuO_{2} are observed. This demonstrates that \\kappa_{mag} is only limited by extrinsic scattering processes, which is a clear signature of ballistic transport in the underlying spin model. Additionally, various subtle modifications of the spin chain are studied. Due to the large mean free path a pristine picture of the intrinsic incidents is expected. In particular, a chemical pressure is applied to the spin chain by doping SrCuO_{2} with Ca. This has a surprisingly strong effect on \\kappa_{mag}. Furthermore, the influence of magnetic Ni and non-magnetic Mg doping is studied for SrCuO_{2}. While Ni-doping has a large impact on the magnetic thermal conductivity, Mg-doping shows no influence. In order to clarify this surprising behavior, \\kappa_{mag} is compared to measurements of the single chain compound Sr_{2}CuO_{3}.
Third, the magnetic thermal conductivity of the spin chain material CaCu_{2}O_{3} doped with non-magnetic Zn impurities is studied. \\kappa_{mag} of the pure compound is linear up to room temperature, which is indicative of a T-independent scattering rate of the magnetic excitations. Both, magnitude and T-dependence of \\kappa_{mag} exhibit a very unusual doping dependence. At moderate Zn-doping the linear temperature dependence of \\kappa_{mag} is preserved and the absolute value of \\kappa_{mag} increases. A slight suppression of \\kappa_{mag} occurs only at high Zn doping, where, surprisingly, the T-dependence of \\kappa_{mag} changes from linearity to one with a higher power of T . In order to clarify this surprising behavior, the results are compared to a detailed study of the g-tensor of the impurities in the material by means of ESR experiments, which reveal a change of the impurity type with increasing Zn-content.
|
Page generated in 0.0413 seconds