• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • Tagged with
  • 7
  • 7
  • 7
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Magnetic heat transport in one-dimensional quantum antiferromagnets

Hlubek, Nikolai 20 June 2011 (has links) (PDF)
Fundamental conservation laws predict a dissipationless transport behavior in one-dimensional S=1/2 spin chains. This truly ballistic heat transport suggests anomalously large life times and mean free paths of the elementary excitations of the spin chain, spinons. Despite this rigorous prediction, in any real system, the transport is dissipative, due to the interaction of spinons with defects and phonons. Nevertheless, a promising large magnetic thermal conductivity \\kappa_{mag} has been observed in a few copper-oxide systems. Characteristic for these cuprate systems is a large exchange interaction J along the spin chain. However, due to the limited number and knowledge of the systems showing a large \\kappa_{mag}, it has been difficult, to identify overarching trends. The goal of this thesis therefore is twofold. First, to test new compounds for the appearance of magnetic heat transport and second, to broaden the understanding of the known compounds by studying the influence of various kinds of impurities. In particular, three families of materials are studied. First, the thermal conductivity \\kappa(T) of the compounds TiOBr and TiOCl is investigated. Below room temperature the compounds undergo two phase transitions T_{c2} and T_{c1}. Above T_{c2} the compounds contain S=1/2 spin chains with J_{Cl}=676 K and J_{Br}=375 K respectively, formed by direct orbital overlap of the Ti-atoms. Below T_{c1} the chains dimerize to form a non-magnetic ground state. The thermal conductivity exhibits pronounced anomalies at T_{c2} and T_{c1} confirming the transitions being of second and first order respectively. Surprisingly, \\kappa(T) appears to be dominated by phonon heat conduction, since no indications of a significant magnetic contribution is found. This is in contrast to the expectation of a spin chain system. In this context possible scenarios to understand the unusual behavior of the thermal conductivity are discussed. Second, two related materials, the single chain Sr_{2}CuO_{3} and the double chain SrCuO_{2} are investigated. In high purity samples huge magnetic heat conductivities and concomitantly, extremely large spinon mean free paths of >0.5 µm for Sr_{2}CuO_{3} and >1 µm for SrCuO_{2} are observed. This demonstrates that \\kappa_{mag} is only limited by extrinsic scattering processes, which is a clear signature of ballistic transport in the underlying spin model. Additionally, various subtle modifications of the spin chain are studied. Due to the large mean free path a pristine picture of the intrinsic incidents is expected. In particular, a chemical pressure is applied to the spin chain by doping SrCuO_{2} with Ca. This has a surprisingly strong effect on \\kappa_{mag}. Furthermore, the influence of magnetic Ni and non-magnetic Mg doping is studied for SrCuO_{2}. While Ni-doping has a large impact on the magnetic thermal conductivity, Mg-doping shows no influence. In order to clarify this surprising behavior, \\kappa_{mag} is compared to measurements of the single chain compound Sr_{2}CuO_{3}. Third, the magnetic thermal conductivity of the spin chain material CaCu_{2}O_{3} doped with non-magnetic Zn impurities is studied. \\kappa_{mag} of the pure compound is linear up to room temperature, which is indicative of a T-independent scattering rate of the magnetic excitations. Both, magnitude and T-dependence of \\kappa_{mag} exhibit a very unusual doping dependence. At moderate Zn-doping the linear temperature dependence of \\kappa_{mag} is preserved and the absolute value of \\kappa_{mag} increases. A slight suppression of \\kappa_{mag} occurs only at high Zn doping, where, surprisingly, the T-dependence of \\kappa_{mag} changes from linearity to one with a higher power of T . In order to clarify this surprising behavior, the results are compared to a detailed study of the g-tensor of the impurities in the material by means of ESR experiments, which reveal a change of the impurity type with increasing Zn-content.
2

Magnetic heat transport in one-dimensional quantum antiferromagnets

Hlubek, Nikolai 23 May 2011 (has links)
Fundamental conservation laws predict a dissipationless transport behavior in one-dimensional S=1/2 spin chains. This truly ballistic heat transport suggests anomalously large life times and mean free paths of the elementary excitations of the spin chain, spinons. Despite this rigorous prediction, in any real system, the transport is dissipative, due to the interaction of spinons with defects and phonons. Nevertheless, a promising large magnetic thermal conductivity \\kappa_{mag} has been observed in a few copper-oxide systems. Characteristic for these cuprate systems is a large exchange interaction J along the spin chain. However, due to the limited number and knowledge of the systems showing a large \\kappa_{mag}, it has been difficult, to identify overarching trends. The goal of this thesis therefore is twofold. First, to test new compounds for the appearance of magnetic heat transport and second, to broaden the understanding of the known compounds by studying the influence of various kinds of impurities. In particular, three families of materials are studied. First, the thermal conductivity \\kappa(T) of the compounds TiOBr and TiOCl is investigated. Below room temperature the compounds undergo two phase transitions T_{c2} and T_{c1}. Above T_{c2} the compounds contain S=1/2 spin chains with J_{Cl}=676 K and J_{Br}=375 K respectively, formed by direct orbital overlap of the Ti-atoms. Below T_{c1} the chains dimerize to form a non-magnetic ground state. The thermal conductivity exhibits pronounced anomalies at T_{c2} and T_{c1} confirming the transitions being of second and first order respectively. Surprisingly, \\kappa(T) appears to be dominated by phonon heat conduction, since no indications of a significant magnetic contribution is found. This is in contrast to the expectation of a spin chain system. In this context possible scenarios to understand the unusual behavior of the thermal conductivity are discussed. Second, two related materials, the single chain Sr_{2}CuO_{3} and the double chain SrCuO_{2} are investigated. In high purity samples huge magnetic heat conductivities and concomitantly, extremely large spinon mean free paths of >0.5 µm for Sr_{2}CuO_{3} and >1 µm for SrCuO_{2} are observed. This demonstrates that \\kappa_{mag} is only limited by extrinsic scattering processes, which is a clear signature of ballistic transport in the underlying spin model. Additionally, various subtle modifications of the spin chain are studied. Due to the large mean free path a pristine picture of the intrinsic incidents is expected. In particular, a chemical pressure is applied to the spin chain by doping SrCuO_{2} with Ca. This has a surprisingly strong effect on \\kappa_{mag}. Furthermore, the influence of magnetic Ni and non-magnetic Mg doping is studied for SrCuO_{2}. While Ni-doping has a large impact on the magnetic thermal conductivity, Mg-doping shows no influence. In order to clarify this surprising behavior, \\kappa_{mag} is compared to measurements of the single chain compound Sr_{2}CuO_{3}. Third, the magnetic thermal conductivity of the spin chain material CaCu_{2}O_{3} doped with non-magnetic Zn impurities is studied. \\kappa_{mag} of the pure compound is linear up to room temperature, which is indicative of a T-independent scattering rate of the magnetic excitations. Both, magnitude and T-dependence of \\kappa_{mag} exhibit a very unusual doping dependence. At moderate Zn-doping the linear temperature dependence of \\kappa_{mag} is preserved and the absolute value of \\kappa_{mag} increases. A slight suppression of \\kappa_{mag} occurs only at high Zn doping, where, surprisingly, the T-dependence of \\kappa_{mag} changes from linearity to one with a higher power of T . In order to clarify this surprising behavior, the results are compared to a detailed study of the g-tensor of the impurities in the material by means of ESR experiments, which reveal a change of the impurity type with increasing Zn-content.
3

Transport in nicht-hermiteschen niedrigdimensionalen Systemen / Transport in Non-Hermitian Low-Dimensional Systems

Bendix, Oliver 20 September 2011 (has links)
No description available.
4

Electronic Transport in Metallic Carbon Nanotubes with Metal Contacts / Elektronischer Transport in metallischen Kohlenstoffnanoröhren mit Metallkontakten

Zienert, Andreas 19 March 2013 (has links) (PDF)
The continuous migration to smaller feature sizes puts high demands on materials and technologies for future ultra-large-scale integrated circuits. Particularly, the copper-based interconnect system will reach fundamental limits soon. Their outstanding properties make metallic carbon nanotubes (CNTs) an ideal material to partially replace copper in future interconnect architectures. Here, a low contact resistance to existing metal lines is crucial. The present thesis contributes to the theory and numerical description of electronic transport in metallic CNTs with metal contacts. Different theoretical approaches are applied to various contact models and electrode materials (Al, Cu, Pd, Ag, Pt, Au) are compared. Ballistic transport calculations are based on the non-equilibrium Greens function formalism combined with tight-binding (TB), extended Hückel theory (EHT) and density functional theory (DFT). Simplified contact models allow a qualitative investigation of both the influence of geometry and CNT length, and the strength and extent of the contact on the transport properties. In addition, such simple contact models are used to compare the influence of different electronic structure methods on transport. It is found that the semiempirical TB and EHT are inadequate to quantitatively reproduce the DFT-based results. Based on this observation, an improved set of Hückel parameters is developed, which remedies this insufficiency. A systematic investigation of different contact materials is carried out using well defined atomistic metal-CNT-metal structures, optimized in a systematic way. Analytical models for the CNT-metal interaction are proposed. Based on that, electronic transport calculations are carried out, which can be extended to large systems by applying the computationally cheap improved EHT. The metal-CNT-metal systems can then be ranked by average conductance: Ag ≤ Au < Cu < Pt ≤ Pd < Al. This corresponds qualitatively with calculated contact distances, binding energies and work functions of CNTs and metals. To gain a deeper understanding of the transport properties, the electronic structure of the metal-CNT-metal systems and their respective parts is analyzed in detail. Here, the energy resolved local density of states is a valuable tool to investigate the CNT-metal interaction and its influences on the transport. / Die kontinuierliche Verkleinerung der Strukturgrößen stellt hohe Anforderungen an Materialen und Technologien zukünftiger hochintegrierter Schaltkreise. Insbesondere die Leistungsfähigkeit kupferbasierte Leitbahnsystem wird bald an fundamentale Grenzen stoßen. Aufgrund ihrer hervorragenden Eigenschaften könnten metallische Kohlenstoffnanoröhren (engl. Carbon Nanotubes, CNTs) Kupfer in zukünftigen Leitbahnsystemen teilweise ersetzen. Dabei ist ein geringer Kontaktwiderstand mit vorhandenen Leitbahnen von entscheidender Bedeutung. Die vorliegende Arbeit liefert grundlegende Beiträge zur Theorie und zur numerischen Beschreibung elektronischer Transporteigenschaften metallischer CNTs mit Metallkontakten. Dazu werden verschiedene theoretische Ansätze auf diverse Kontaktmodelle angewandt und eine Auswahl von Elektrodenmaterialen (Al, Cu, Pd, Ag, Pt, Au) verglichen. Die Beschreibung ballistischen Elektronentransports erfolgt mittels des Formalismus der Nichtgleichgewichts-Green-Funktionen in Kombination mit Tight-Binding (TB), erweiterter Hückel-Theorie (EHT) und Dichtefunktionaltheorie (DFT). Vereinfachte Kontaktmodelle dienen der qualitativen Untersuchung des Einflusses von Geometrie und Länge der Nanoröhren, sowie von Stärke und Ausdehnung des Kontaktes. Darüber hinaus erlauben solch einfache Modelle mit geringem numerischen Aufwand den Einfluss verschiedener Elektronenstrukturmethoden zu untersuchen. Es zeigt sich, dass die semiempirischen Methoden TB und EHT nicht in der Lage sind die Ergebnisse der DFT quantitativ zu reproduzieren. Ausgehend von diesen Ergebnissen wird ein verbesserter Satz von Hückel-Parametern generiert, der diesen Mangel behebt. Die Untersuchung verschiedener Kontaktmaterialien erfolgt an wohldefinierten atomistischen Metall-CNT-Metall-Strukturen, welche systematisch optimiert werden. Analytische Modelle zur Beschreibung der CNT-Metall-Wechselwirkung werden vorgeschlagen. Darauf aufbauende Berechnungen der elektronischen Transporteigenschaften, können mit Hilfe der verbesserten EHT auf große Systeme ausgedehnt werden. Die Ergebnisse ermöglichen eine Reihung der Metall-CNT-Metall-Systeme hinsichtlich ihrer Leitfähigkeit: Ag ≤ Au < Cu < Pt ≤ Pd < Al. Dies korrespondiert qualitativ mit berechneten Kontaktabständen, Bindungsenergien und Austrittarbeiten der CNTs und Metalle. Zum tieferen Verständnis der Transporteigenschaften erfolgt eine detaillierte Analyse der elektronischen Struktur der Metall-CNT-Metall-Systeme und ihrer Teilsysteme. Dabei erweist sich die energieaufgelöste lokale Zustandsdichte als nützliches Werkzeug zur Visulisierung und zur Charakterisierung der Wechselwirkung zwischen CNT und Metall sowie deren Einfluss auf den Transport.
5

Electronic Transport Properties of Copper and Gold at Atomic Scale / Elektronische Transporteigenschaften von Kupfer und Gold auf atomarer Skala

Mohammadzadeh, Saeideh 15 December 2010 (has links) (PDF)
The factors governing electronic transport properties of copper and gold atomic-size contacts are theoretically examined in the present work. A two-terminal conductor using crystalline electrodes is adopted. The non-equilibrium Green’s function combined with the density functional tight-binding method is employed via gDFTB simulation tool to calculate the transport at both equilibrium and non-equilibrium conditions. The crystalline orientation, length, and arrangement of electrodes have very weak influence on the electronic characteristics of the considered atomic wires. The wire width is found to be the most effective geometric aspect determining the number of conduction channels. The obtained conductance oscillation and linear current-voltage curves are interpreted. To analyze the conduction mechanism in detail, the transmission channels and their decomposition to the atomic orbitals are calculated in copper and gold single point contacts. The presented results offer a possible explanation for the relation between conduction and geometric structure. Furthermore, the results are in good agreement with available experimental and theoretical studies. / In der vorliegenden Arbeit werden die wesentlichen Faktoren, die die elektronischen Transporteigenschaften von Kontaktstrukturen atomarer Größe aus Kupfer bzw. Gold bestimmen, theoretisch untersucht. Untersuchungsgegenstand ist eine leitfähige Struktur zwischen zwei kristallinen Elektroden. Um Transportberechungen sowohl unter Gleichgewichts- als auch unter Nicht-Gleichgewichts-Bedingungen durchführen zu können, wird die Simulations-Software gDFTB, die auf dem Nicht-Gleichgewichts-Green-funktionenformalismus in Kombination mit der Dichtefunktional-Tight-Binding-Methode beruht, eingesetzt. Die elektronischen Eigenschaften der betrachteten atomaren Drähte werden nur sehr schwach von ihrer kristallinen Orientierung, ihrer Länge und der Elektrodenanordnung beeinflusst. Als effektivster geometrischer Faktor wurde der Leiterquerschnitt gefunden, weil dieser die Anzahl der Leitungskanäle bestimmt. Darüber hinaus werden die erhaltenen Leitfähigkeitsoszillationen und die linearen Strom-Spannungs-Kennlinien erklärt. Für eine detaillierte Analyse des Leitungsmechanismus werden bei den Ein-Atom-Kontakten aus Kupfer und Gold die Übertragungskanäle und ihre Aufspaltung in Atomorbitale betrachtet. Die präsentierten Ergebnisse bieten eine mögliche Erklärung für den Zusammenhang zwischen Leitfähigkeit und geometrischer Struktur. Die Resultate zeigen eine akzeptable Übereinstimmung mit den verfügbaren experimentellen und theoretischen Studien.
6

Electronic Transport in Metallic Carbon Nanotubes with Metal Contacts

Zienert, Andreas 11 January 2013 (has links)
The continuous migration to smaller feature sizes puts high demands on materials and technologies for future ultra-large-scale integrated circuits. Particularly, the copper-based interconnect system will reach fundamental limits soon. Their outstanding properties make metallic carbon nanotubes (CNTs) an ideal material to partially replace copper in future interconnect architectures. Here, a low contact resistance to existing metal lines is crucial. The present thesis contributes to the theory and numerical description of electronic transport in metallic CNTs with metal contacts. Different theoretical approaches are applied to various contact models and electrode materials (Al, Cu, Pd, Ag, Pt, Au) are compared. Ballistic transport calculations are based on the non-equilibrium Greens function formalism combined with tight-binding (TB), extended Hückel theory (EHT) and density functional theory (DFT). Simplified contact models allow a qualitative investigation of both the influence of geometry and CNT length, and the strength and extent of the contact on the transport properties. In addition, such simple contact models are used to compare the influence of different electronic structure methods on transport. It is found that the semiempirical TB and EHT are inadequate to quantitatively reproduce the DFT-based results. Based on this observation, an improved set of Hückel parameters is developed, which remedies this insufficiency. A systematic investigation of different contact materials is carried out using well defined atomistic metal-CNT-metal structures, optimized in a systematic way. Analytical models for the CNT-metal interaction are proposed. Based on that, electronic transport calculations are carried out, which can be extended to large systems by applying the computationally cheap improved EHT. The metal-CNT-metal systems can then be ranked by average conductance: Ag ≤ Au < Cu < Pt ≤ Pd < Al. This corresponds qualitatively with calculated contact distances, binding energies and work functions of CNTs and metals. To gain a deeper understanding of the transport properties, the electronic structure of the metal-CNT-metal systems and their respective parts is analyzed in detail. Here, the energy resolved local density of states is a valuable tool to investigate the CNT-metal interaction and its influences on the transport. / Die kontinuierliche Verkleinerung der Strukturgrößen stellt hohe Anforderungen an Materialen und Technologien zukünftiger hochintegrierter Schaltkreise. Insbesondere die Leistungsfähigkeit kupferbasierte Leitbahnsystem wird bald an fundamentale Grenzen stoßen. Aufgrund ihrer hervorragenden Eigenschaften könnten metallische Kohlenstoffnanoröhren (engl. Carbon Nanotubes, CNTs) Kupfer in zukünftigen Leitbahnsystemen teilweise ersetzen. Dabei ist ein geringer Kontaktwiderstand mit vorhandenen Leitbahnen von entscheidender Bedeutung. Die vorliegende Arbeit liefert grundlegende Beiträge zur Theorie und zur numerischen Beschreibung elektronischer Transporteigenschaften metallischer CNTs mit Metallkontakten. Dazu werden verschiedene theoretische Ansätze auf diverse Kontaktmodelle angewandt und eine Auswahl von Elektrodenmaterialen (Al, Cu, Pd, Ag, Pt, Au) verglichen. Die Beschreibung ballistischen Elektronentransports erfolgt mittels des Formalismus der Nichtgleichgewichts-Green-Funktionen in Kombination mit Tight-Binding (TB), erweiterter Hückel-Theorie (EHT) und Dichtefunktionaltheorie (DFT). Vereinfachte Kontaktmodelle dienen der qualitativen Untersuchung des Einflusses von Geometrie und Länge der Nanoröhren, sowie von Stärke und Ausdehnung des Kontaktes. Darüber hinaus erlauben solch einfache Modelle mit geringem numerischen Aufwand den Einfluss verschiedener Elektronenstrukturmethoden zu untersuchen. Es zeigt sich, dass die semiempirischen Methoden TB und EHT nicht in der Lage sind die Ergebnisse der DFT quantitativ zu reproduzieren. Ausgehend von diesen Ergebnissen wird ein verbesserter Satz von Hückel-Parametern generiert, der diesen Mangel behebt. Die Untersuchung verschiedener Kontaktmaterialien erfolgt an wohldefinierten atomistischen Metall-CNT-Metall-Strukturen, welche systematisch optimiert werden. Analytische Modelle zur Beschreibung der CNT-Metall-Wechselwirkung werden vorgeschlagen. Darauf aufbauende Berechnungen der elektronischen Transporteigenschaften, können mit Hilfe der verbesserten EHT auf große Systeme ausgedehnt werden. Die Ergebnisse ermöglichen eine Reihung der Metall-CNT-Metall-Systeme hinsichtlich ihrer Leitfähigkeit: Ag ≤ Au < Cu < Pt ≤ Pd < Al. Dies korrespondiert qualitativ mit berechneten Kontaktabständen, Bindungsenergien und Austrittarbeiten der CNTs und Metalle. Zum tieferen Verständnis der Transporteigenschaften erfolgt eine detaillierte Analyse der elektronischen Struktur der Metall-CNT-Metall-Systeme und ihrer Teilsysteme. Dabei erweist sich die energieaufgelöste lokale Zustandsdichte als nützliches Werkzeug zur Visulisierung und zur Charakterisierung der Wechselwirkung zwischen CNT und Metall sowie deren Einfluss auf den Transport.
7

Electronic Transport Properties of Copper and Gold at Atomic Scale

Mohammadzadeh, Saeideh 23 November 2010 (has links)
The factors governing electronic transport properties of copper and gold atomic-size contacts are theoretically examined in the present work. A two-terminal conductor using crystalline electrodes is adopted. The non-equilibrium Green’s function combined with the density functional tight-binding method is employed via gDFTB simulation tool to calculate the transport at both equilibrium and non-equilibrium conditions. The crystalline orientation, length, and arrangement of electrodes have very weak influence on the electronic characteristics of the considered atomic wires. The wire width is found to be the most effective geometric aspect determining the number of conduction channels. The obtained conductance oscillation and linear current-voltage curves are interpreted. To analyze the conduction mechanism in detail, the transmission channels and their decomposition to the atomic orbitals are calculated in copper and gold single point contacts. The presented results offer a possible explanation for the relation between conduction and geometric structure. Furthermore, the results are in good agreement with available experimental and theoretical studies. / In der vorliegenden Arbeit werden die wesentlichen Faktoren, die die elektronischen Transporteigenschaften von Kontaktstrukturen atomarer Größe aus Kupfer bzw. Gold bestimmen, theoretisch untersucht. Untersuchungsgegenstand ist eine leitfähige Struktur zwischen zwei kristallinen Elektroden. Um Transportberechungen sowohl unter Gleichgewichts- als auch unter Nicht-Gleichgewichts-Bedingungen durchführen zu können, wird die Simulations-Software gDFTB, die auf dem Nicht-Gleichgewichts-Green-funktionenformalismus in Kombination mit der Dichtefunktional-Tight-Binding-Methode beruht, eingesetzt. Die elektronischen Eigenschaften der betrachteten atomaren Drähte werden nur sehr schwach von ihrer kristallinen Orientierung, ihrer Länge und der Elektrodenanordnung beeinflusst. Als effektivster geometrischer Faktor wurde der Leiterquerschnitt gefunden, weil dieser die Anzahl der Leitungskanäle bestimmt. Darüber hinaus werden die erhaltenen Leitfähigkeitsoszillationen und die linearen Strom-Spannungs-Kennlinien erklärt. Für eine detaillierte Analyse des Leitungsmechanismus werden bei den Ein-Atom-Kontakten aus Kupfer und Gold die Übertragungskanäle und ihre Aufspaltung in Atomorbitale betrachtet. Die präsentierten Ergebnisse bieten eine mögliche Erklärung für den Zusammenhang zwischen Leitfähigkeit und geometrischer Struktur. Die Resultate zeigen eine akzeptable Übereinstimmung mit den verfügbaren experimentellen und theoretischen Studien.

Page generated in 0.3992 seconds