Spelling suggestions: "subject:"spintronics"" "subject:"pintronics""
271 |
Optical control and detection of spin coherence in multilayer systems. / Controle ótico e detecção de coerência de spin em sistemas de multicamadas.Ullah, Saeed 17 April 2017 (has links)
Since a decade, spintronics and related physics have attracted considerable attention due to the massive research conducted in these areas. The main reason for growing interest in these fields is the expectation to use the electrons spin instead of or in addition to the charge for the applications in spin-based electronics, quantum information, and quantum computation. A prime concern for these spins to be possible candidates for carrying information is the ability to coherently control them on the time scales much faster than the decoherence times. This thesis reports on the spin dynamics in two-dimensional electron gases hosted in artificially grown III-V semiconductor quantum wells. Here we present a series of experiments utilizing the techniques to optically control the spin polarization triggered by either optical or electrical methods i.e. well known pump-probe technique and current-induced spin polarization. We investigated the spin coherence in high mobility dense two-dimensional electron gas confined in GaAs/AlGaAs double and triple quantum wells, and, it\'s dephasing on the experimental parameters like applied magnetic field, optical power, pump-probe delay and excitation wavelength. We have also studied the large spin relaxation anisotropy and the influence of sample temperature on the long-lived spin coherence in triple quantum well structure. The anisotropy was studied as a function sample temperature, pump-probe delay time, and excitation power, where, the coherent spin dynamics was measured in a broad range of temperature from 5 K up to 250 K using time-resolved Kerr rotation and resonant spin amplification. Additionally, the influence of Al concentration on the spin dynamics of AlGaAs/AlAs QWs was studied. Where, the composition engineering in the studied structures allows tuning of the spin dephasing time and electron g-factor. Finally, we studied the macroscopic transverse drift of long current-induced spin coherence using non-local Kerr rotation measurements, based on the optical resonant amplification of the electrically-induced polarization. Significant spatial variation of the electron g-factor and the coherence times in the nanosecond scale transported away half-millimeter distances in a direction transverse to the applied electric field was observed. / Há uma década, a spintrônica e outras áreas relacionadas vêm atraindo considerável atenção, devido a enorme quantidade de pesquisa conduzidas por elas. A principal razão para o crescente interesse neste campo é a expectativa da aplicação do controle do spin do elétron no lugar ou em adição à carga, em dispositivos eletrônicos e informação e computação quânticas. A possibilidade destes spins carregarem informação depende, primeiramente, da habilidade de controlá-los coerentemente, em uma escala de tempo muito mais rápida do que o tempo de decoerência. Esta tese trata da dinâmica de spins em gases de elétrons bidimensionais, em poços quânticos de semicondutores III-V, crescidos artificialmente. Nós apresentamos uma série de experimentos, utilizando técnicas para o controle ótico da polarização de spin, desencadeadas por métodos óticos ou eletrônicos, ou seja, técnicas conhecidas de bombeio e prova e polarização de spin induzida por corrente. Nós investigamos a coerência de spin em gases bidimensionais, confinados em poços quânticos duplos e triplos de GaAs/AlGaAs e a dependência da defasagem com parâmetros experimentais, como campo magnético externo, potência ótica, tempo entre os pulsos de bombeio e prova e comprimento de onda da excitação. Também estudamos a grande anisotropia de relaxação de spin como função da temperatura da amostra, potência de excitação e defasagem entre bombeio e prova, medidos para uma vasta gama de temperatura, entre 5K e 250K, usando Rotação de Kerr com Resolução Temporal (TRKR) e Amplificação Ressonante de Spin (RSA). Além disso estudamos a influência da concentração de Al na dinâmica dos poços de AlGaAs/AlAs, para o qual a engenharia da composição da estrutura permite sintonizar o tempo de defasagem de spin e o fator $ g $ do elétron. Por fim, estudamos a deriva transversal macroscópica da longa coerência de spin induzida por corrente, através de medidas de Rotação de Kerr não-locais, baseadas na amplificação ressonante ótica da polarização eletricamente induzida. Observamos uma variação espacial significante do fator $ g $ e do tempo de vida da coerência, na escala de nanosegundos, deslocada distâncias de meio milímetro na direção transversa ao campo magnético aplicado.
|
272 |
Ferromagnetismo no regime Hall quântico inteiro via teoria do funcional de densidade / Quantum Hall ferromagnetism via density functional theoryGerson Ferreira Júnior 21 June 2011 (has links)
O efeito Hall quântico surge em gases de elétrons bidimensionais (2DEG) na presença de altos campos magnéticos B. O campo magnético quantiza o movimento planar dos elétrons em órbitas ciclotrônicas caracterizadas pelos níveis de Landau. Neste regime a resistividade transversal (ou Hall) ρxy em função de B exibe platôs em submúltiplos inteiros de e2/h, i.e., ρxy = ν-1 e2/h, sendo ν o fator de preenchimento dos níveis de Landau. Por sua vez, a resistividade longitudinal ρxx apresenta picos nas transições entre platôs de ρxy. Em primeira instância, ρxx é uma medida indireta da densidade de estados no nível de Fermi g(εF), e os picos dos mesmos indicam cruzamentos do nível de Fermi εF com niveis de Landau. Assim, o diagrama de densidade de elétrons n2D e B dos picos de ρxx ~ g(εF) fornece um mapa topológico da estrutura eletrônica do sistema. Em sistemas de duas subbandas, ρxx(n2D, B) exibe estruturas em forma de anel devido a cruzamentos de níveis de Landau de subbandas distintas [experimentos do grupo do Prof. Jiang (UCLA)]. Estes cruzamentos podem ainda levar a instabilidades ferromagnéticas. Investigamos estas instabilidades usando a teoria do funcional da densidade (DFT) para o cálculo da estrutura eletrônica, e o modelo de Ando (formalismo de Kubo) para o cálculo de ρxx e ρxy. Para temperaturas mais altas (340 mK) obtemos as estruturas em forma de anel em ρxx. Para temperaturas mais baixas (70 mK), observamos uma quebra dos anéis devido a transições de fase ferromagnéticas. Variando-se o ângulo θ de B com relação ao 2DEG observa-se o encolhimento do anel. Nossos resultados mostram que o ângulo de colapso total do anel depende de uma competição entre o termo de troca da interação de Coulomb (princípio de Pauli) e cruzamentos evitados devido ao ângulo θ finito. As transições de fase exibem ainda o fenômeno de histerese. Na região de instabilidade ferromagnética obtemos diferentes soluções variando B de forma crescente ou decrescente. Estas soluções possuem energias total diferentes, de forma que representam estados fundamental e excitado de muitos corpos. Esta observação, juntamente com resultados anteriores do grupo [Freire & Egues (2007)], representam as primeiras realizações teóricas da previsão da possibilidade de estados excitados como mínimos locais do funcional de energia do estado fundamental [Perdew & Levy (1985)]. O modelo aqui proposto fornece excelente acordo com os experimentos considerados. Adicionalmente, a observação sistemática e experimentalmente verificada dos estados excitados valida as previsões de Perdew & Levy. Aplicamos ainda estas mesmas ideias no cálculo da estrutura eletrônica e condutância de fios quânticos na presença de campos magnéticos, mostrando que cruzamentos de modos transversais também exibem instabilidades ferromagnéticas observadas em experimentos recentes [Dissertação de Mestrado de Filipe Sammarco, IFSC/USP], fortalecendo a validade do modelo apresentado nesta tese. / The quantum Hall effect arises in two dimensional electron gases (2DEG) under high magnetic fields B. The magnetic field quantizes the planar motion of the electrons into cyclotron orbits given by the Landau levels. In this regime the transversal (Hall) resistivity ρxy shows plateaus as a function of B at integer sub-multiples of e2/h, i.e., ρxy = ν-1 e2/h, where n is the filling factor of the Landau levels. The longitudinal resistivity ρxx shows peaks at the transition between the plateaus of ρxy. In principle, ρxx is an indirect measure of the density of states at the Fermi level g(εF), so that the peaks indicate when the Fermi level εF crosses a Landau level. Therefore, a density-B-field diagram n2D-B of the ρxx ~ g(εF) peaks shows a topological map of the electronic structure of the system. In two-subband systems, ρxx( n2D, B) shows ringlike structures due to crossings of spin-split Landau levels from distinct subbands [experiments from the group of Prof. Jiang (UCLA)] that could lead to ferromagnetic instabilities. We study these instabilities using the density functional theory (DFT) to calculate the electronic structure, and Ando\'s model (Kubo formalism) for ρxx and ρxy. At higher temperatures (340 mK) we also obtain the ringlike structures in ρxx. At lower temperatures (70 mK) we see broken rings due to quantum Hall ferromagnetic phase transitions. Tilting B by theta with respect to the 2DEG normal we find that the ring structure shrinks. Our results show that the angle of full collapse depends on a competition between the exchange term from the Coulomb interaction (Pauli principle) and the anticrossing of Landau levels due to the finite angle theta. Additionally, at the instabilities we observe hysteresis. Sweeping the B field up or down near these regions we obtain two different solutions with distinct total energies, corresponding to the ground state and an excited state of the many-body system. This result, together with previous results of our group [Freire & Egues (2007)], are the first realizations of the theoretical prediction of the possibility of excited states as local minima of the ground state energy functional [Perdew & Levy (1985)]. The model proposed here shows an excellent agreement with the experiments. Additionally, the systematic and experimentally verified observation of excited states corroborates the predictions of Perdew & Levy. Similar ideas as presented here when applied to the electronic structure and conductance of quantum wires with an in-plane magnetic field show ferromagnetic instabilities at crossings of the wire transverse modes [Master Thesis of Filipe Sammarco, IFSC/USP], also with excellent experimental agreement. This strengthen the range of validity of the model proposed in this Thesis.
|
273 |
Magnetic field effect and other spectroscopies of organic semiconductor and hybrid organic-inorganic perovskite devicesSahin Tiras, Kevser 01 August 2018 (has links)
This thesis consists of three main studies: magnetic field effects in thermally activated delayed fluorescent (TADF) organic light emitting diodes (OLEDs), magnetic field effects in bipolar and unipolar polythiophene (P3HT) devices and a study of hybrid organic/inorganic perovskite devices.
Spin-dependent transport and recombination processes of spin-pair species have been detected by magnetic field effect (MFE) technique in carbon-based semi- conductor devices. Magneto-electroluminescence (MEL) and magneto-conductivity have been measured as a function of the applied magnetic field, B, in light emitting diodes. TADF materials have been used instead of simple fluorescent materials in OLEDs. We have observed very large magnetic response with TADF materials.
The second study is magnetic field effects of regio-regular P3HT based OLED devices. P3HT is a well known semiconducting polymer, and its electrical properties such as magneto-conductance can be affected by an applied magnetic field. P3HT was chosen because it exhibits a sign change in magnetoresistance (MR) as the bias is increased. Unipolar and bipolar devices have been fabricated with different electrode materials to understand which model can be best to explain organic magnetoresistance effect, possibly depending on the operating regime of the device. Transport and luminescence spectroscopies were studied to isolate the different mechanisms and identify their fingerprints.
The third study is on hybrid organic-inorganic perovskite devices. With the potential of achieving very high efficiencies and the very low production costs, perovskite solar cells have become commercially attractive. Scanning electron microscopy (SEM) images and absorption spectrum of the films were compared in single-step solution, two-step solution and solution-assisted vapor deposition techniques. Grain size, morphology and thickness parameters of perovskite films were studied within these techniques. Perovskite solar cells were fabricated and their efficiencies were measured.
|
274 |
Energy Efficient Spintronic Device for Neuromorphic ComputationAzam, Md Ali 01 January 2019 (has links)
Future computing will require significant development in new computing device paradigms. This is motivated by CMOS devices reaching their technological limits, the need for non-Von Neumann architectures as well as the energy constraints of wearable technologies and embedded processors. The first device proposal, an energy-efficient voltage-controlled domain wall device for implementing an artificial neuron and synapse is analyzed using micromagnetic modeling. By controlling the domain wall motion utilizing spin transfer or spin orbit torques in association with voltage generated strain control of perpendicular magnetic anisotropy in the presence of Dzyaloshinskii-Moriya interaction (DMI), different positions of the domain wall are realized in the free layer of a magnetic tunnel junction to program different synaptic weights. Additionally, an artificial neuron can be realized by combining this DW device with a CMOS buffer. The second neuromorphic device proposal is inspired by the brain. Membrane potential of many neurons oscillate in a subthreshold damped fashion and fire when excited by an input frequency that nearly equals their Eigen frequency. We investigate theoretical implementation of such “resonate-and-fire” neurons by utilizing the magnetization dynamics of a fixed magnetic skyrmion based free layer of a magnetic tunnel junction (MTJ). Voltage control of magnetic anisotropy or voltage generated strain results in expansion and shrinking of a skyrmion core that mimics the subthreshold oscillation. Finally, we show that such resonate and fire neurons have potential application in coupled nanomagnetic oscillator based associative memory arrays.
|
275 |
Magnetic field effects in exciplex- and exciton-based organic light emitting diodes and radical-doped devicesWang, Yifei 01 January 2017 (has links)
Organic semiconductors (OSCs) have already been shown to have great potential to play an important role in the future of clean energy generation (organic solar cells) and provide energy efficient lighting (organic light-emitting diodes, OLED). Prior research has found that the light-emission efficiency of OLED is severely limited by the magnetic state (technically the spin-configuration) of the light-emission process. In this thesis, we work on the processes using external magnetic fields that can overcome these magnetic limitations. A major focus of this research is to enhance the performance of OLED, while at the same time to unravel the scientific mechanisms by which magnetic fields act on OSCs devices.
Thermally activated delayed fluorescence (TADF) is a next-generation OLED emission technology which enables nearly 100% light-emission efficiency without using heavy precious metals. TADF characteristics depend on the probability of reverse intersystem crossing (RISC) from the triplet excited states (T1) to singlet excited states (S1). The conversion (T1 to S1) process depends strongly on spin dynamics, thus we predict a dramatic magnetic field effects (MFEs) in such TADF OLED devices. In subsequent experiments we observed that changes in TADF devices due to various forms of electrical stress can lead to enormous increases in magnetic field effects (MFEs) on the current (> 1400%) and electroluminescence (> 4000%). Our work provides a flexible and inexpensive pathway towards magnetic functionality and field sensitivity in current organic devices. Such OLED pave the way for novel magnetic sensitive OSCs devices with integrated optical, electronic and magnetic characteristics.
Organic magnetoresistance (OMAR) has been observed to alter the current and efficiency of OLED without any ferromagnetic components. Here we utilizes slight alterations to the device properties, the addition of a radical-doped functional layer, in which the spin-relaxing effects of localized nuclear spins and electronic spins interfere, to address the assumption about the importance of the hyperfine interaction and to attempt to differentiate between the different models for OMAR. A feature where the magnitude of OMAR exhibits a plateau over a wide range of doping fraction was observed at all temperatures investigated. This phenomenon is well explained by a theory in which a single dopant spin strongly interacts, by exchange, with one of the bottleneck sites. A similar can be used to explain the efficiency increases observed in organic solar cells for certain doping fractions.
|
276 |
Electronic Structure and Statistical Methods Applied to Nanomagnetism, Diluted Magnetic Semiconductors and SpintronicsBergqvist, Lars January 2005 (has links)
<p>This thesis is divided in three parts. In the first part, a study of materials aimed for spintronics applications is presented. More specifically, calculations of the critical temperature in diluted magnetic semiconductors (DMS) and half-metallic ferromagnets are presented using a combination of electronic structure and statistical methods. It is shown that disorder and randomness of the magnetic atoms in DMS materials play a very important role in the determination of the critical temperature.</p><p>The second part treats materials in reduced dimensions. Studies of multilayer and trilayer systems are presented. A theoretical model that incorporates interdiffusion in a multilayer is developed that gives better agreement with experimental observations. Using Monte Carlo simulations, the observed magnetic properties in the trilayer system Ni/Cu/Co at finite temperatures are qualitatively reproduced.</p><p>In the third part, electronic structure calculations of complex Mn-based compounds displaying noncollinear magnetism are presented. The calculations reproduce with high accuracy the observed magnetic properties in these compounds. Furthermore, a model based on the electronic structure of the necessary conditions for noncollinear magnetism is presented.</p>
|
277 |
Density Functional Theory Applied to Materials for SpintronicsIusan, Diana Mihaela January 2010 (has links)
The properties of dilute magnetic semiconductors have been studied by combined ab initio, Monte Carlo, and experimental techniques. This class of materials could be very important for future spintronic devices, that offer enriched functionality by making use of both the spin and the charge of the electrons. The main part of the thesis concerns the transition metal doped ZnO. The role of defects on the magnetic interactions in Mn-doped ZnO was investigated. In the presence of acceptor defects such as zinc vacancies and oxygen substitution by nitrogen, the magnetic interactions are ferromagnetic. For dilute concentrations of Mn (~ 5%) the ordering temperature of the system is low, due to the short ranged character of the exchange interactions and disorder effects. The clustering tendency of the Co atoms in a ZnO matrix was also studied. The electronic structure, and in turn the magnetic interactions among the Co atoms, is strongly dependent on the exchange-correlation functional used. It is found that Co impurities tend to form nanoclusters and that the interactions among these atoms are antiferromagnetic within the local spin density approximation + Hubbard U approach. The electronic structure, as well as the chemical and magnetic interactions in Co and (Co,Al)-doped ZnO, was investigated by joined experimental and theoretical techniques. For a good agreement between the two, approximations beyond the local density approximation must be used. It is found that the Co atoms prefer to cluster within the semiconducting matrix, a tendency which is increased with Al co-doping. We envision that it is best to describe the system as superparamagnetic due to the formation of Co nanoclusters within which the interactions are antiferromagnetic. The magnetic anisotropy and evolution of magnetic domains in Fe81Ni19/Co(001) superlattices were investigated both experimentally, as well as using model spin dynamics. A magnetic reorientation transition was found.
|
278 |
Magnetization Dynamics in Nano-Contact Spin Torque Oscillators : Solitonic bullets and propagating spin wavesBonetti, Stefano January 2010 (has links)
Magnetization dynamics in nano-contact spin torque oscillators (STOs) is investigated from an experimental and theoretical point of view. The fundamentals of magnetization dynamics due to spin transfer torque are given. A custom-made high frequency (up to 46 GHz) in large magnetic fields (up to 2.2 T) microwave characterization setup has been built for the purpose and described in this thesis. A unique feature of this setup is the capability of applying magnetic fields at any direction θe out of the sample plane, and with high precision. This is particularly important, because the (average) out-of-plane angle of the STO free magnetic layer has fundamental impact on spin wave generation and STO operation. By observing the spin wave spectral emission as a function of θe, we find that at angles θe below a certain critical angle θcr, two distinct spin wave modes can be excited: a propagating mode, and a localized mode of solitonic character (so called spin wave bullet). The experimental frequency, current threshold and frequency tuneability with current of the two modes can be described qualitatively by analytical models and quantitatively by numerical simulations. We are also able to understand the importance, so far underestimated, of the Oersted field in the dynamics of nano-contact STOs. In particular, we show that the Oersted field strongly affects the current tuneability of the propagating mode at subcritical angles, and it is also the fundamental cause of the mode hopping observed in the time-domain. This mode hopping has been observed both experimentally using a state-of-the-art real-time oscilloscope and corroborated by micromagnetic simulations. Micromagnetic simulations also reveal details of the spatial distribution of the spin wave excitations. By investigating the emitted power as a function of θe, we observed two characteristic behaviors for the two spin wave modes: a monotonic increase of the power for increasing out-of-plane angles in the case of the propagating mode; an increase towards a maximum power followed by a drop of it at the critical angle for the localized mode. Both behaviors are reproduced by micromagnetic simulations. The agreement with the simulations offers also a way to better understand the precession dynamics, since the emitted power is strongly connected to the angular variation of the giant magnetoresistance signal. We also find that the injection locking of spin wave modes with a microwave source has a strong dependence on θe, and reaches a maximum locking strength at perpendicular angles. We are able to describe these results in the theoretical framework of non-linear spin wave dynamics. / QC 20101130
|
279 |
Electronic Structure and Statistical Methods Applied to Nanomagnetism, Diluted Magnetic Semiconductors and SpintronicsBergqvist, Lars January 2005 (has links)
This thesis is divided in three parts. In the first part, a study of materials aimed for spintronics applications is presented. More specifically, calculations of the critical temperature in diluted magnetic semiconductors (DMS) and half-metallic ferromagnets are presented using a combination of electronic structure and statistical methods. It is shown that disorder and randomness of the magnetic atoms in DMS materials play a very important role in the determination of the critical temperature. The second part treats materials in reduced dimensions. Studies of multilayer and trilayer systems are presented. A theoretical model that incorporates interdiffusion in a multilayer is developed that gives better agreement with experimental observations. Using Monte Carlo simulations, the observed magnetic properties in the trilayer system Ni/Cu/Co at finite temperatures are qualitatively reproduced. In the third part, electronic structure calculations of complex Mn-based compounds displaying noncollinear magnetism are presented. The calculations reproduce with high accuracy the observed magnetic properties in these compounds. Furthermore, a model based on the electronic structure of the necessary conditions for noncollinear magnetism is presented.
|
280 |
Ferromagnetic and multiferroic thin films aimed towards optoelectronic and spintronic applicationsZaidi, Tahir 24 May 2010 (has links)
This work targeted the growth of gadolinium (Gd)-doped gallium nitride (GaN) thin films (Ga₁₋ₓGdₓN) by metal organic chemical vapor deposition (MOCVD). Characterization and evaluation of these Ga₁₋ₓGdₓN thin films for application in spintronics/optoelectronics devices also formed part of this work. This work presents: (1) the first report of stable, reproducible n- and p-type Ga₁₋ₓGdₓN thin films by MOCVD; (2) the first Ga₁₋ₓGdₓN p-n diode structure; and (3) the first report of a room temperature spin-polarized LED using a Ga₁₋ₓGdₓN spin injection layer. The Ga₁₋ₓGdₓN thin films grown in this work were electrically conductive, and co-doping them with Silicon (Si) or Magnesium (Mg) resulted in n-type and p-type materials, respectively. All the materials and structures grown in this work, including the Ga₁₋ₓGdₓN-based p-n diode and spin polarized LED, were characterized for their structural, optical, electrical and magnetic properties. The spin-polarized LED gave spin polarization ratio of 22% and systematic variation of this ratio at room temperature with external magnetic field was observed.
|
Page generated in 0.0443 seconds