• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 1
  • Tagged with
  • 29
  • 29
  • 21
  • 21
  • 12
  • 11
  • 11
  • 11
  • 10
  • 8
  • 8
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Flux Performance and Silver Leaching From In-Situ Synthesized Silver Nanoparticle Treated Reverse Osmosis Point of Use Membranes

January 2017 (has links)
abstract: Drinking water filtration using reverse osmosis (RO) membranes effectively removes salts and most other inorganic, organic, and microbial pollutants. RO technologies are utilized at both the municipal and residential scale. The formation of biofilms on RO membranes reduces water flux and increases energy consumption. The research conducted for this thesis involves In-Situ coating of silver, a known biocide, on the surface of RO membranes. This research was adapted from a protocol developed for coating flat sheet membranes with silver nanoparticles, and scaled up into spiral-wound membranes that are commonly used at the residential scale in point-of-use (POU) filtration systems. Performance analyses of the silver-coated spiral-wound were conducted in a mobile drinking water treatment system fitted with two POU units for comparison. Five month-long analyses were performed, including a deployment of the mobile system. In addition to flux, salt rejection, and other water quality analyses, additional membrane characterization tests were conducted on pristine and silver-coated membranes. For flat sheet membranes coated with silver, the surface charge remained negative and contact angle remained below 90. Scaling up to spiral-wound RO membrane configuration was successful, with an average silver-loading of 1.93 g-Ag/cm2. Results showed the flux of water through the membrane ranged from 8 to 13 liters/m2*hr. (LMH) operating at 25% recovery during long-term of operation. The flux was initially decreased due to the silver coating, but no statistically significant differences were observed after 14 days of operation (P < 0.05). The salt rejection was also not effected due to the silver coating (P < 0.05). While 98% of silver was released during long-term studies, the silver release from the spiral-wound membrane was consistently below the secondary MCL of 100 ppb established by the EPA, and was consistently below 5 ppb after two hours of operation. Microbial assays in the form of heterotrophic plate counts suggested there was no statistically significant difference in the prevention of biofouling formation due to the silver coating (P < 0.05). In addition to performance tests and membrane characterizations, a remote data acquisition system was configured to remotely monitor performance and water quality parameters in the mobile system. / Dissertation/Thesis / Masters Thesis Engineering 2017
2

Significant energy savings by optimising membrane design in multi-stage reverse osmosis wastewater treatment process

Al-Obaidi, Mudhar A.A.R., Kara-Zaitri, Chakib, Mujtaba, Iqbal 18 January 2018 (has links)
Yes / The total energy consumption of many Reverse Osmosis (RO) plants has continuously improved as a result of manufacturing highly impermeable membranes in addition to implementing energy recovery devices. The total energy consumption of the RO process contributes significantly to the total cost of water treatment. Therefore any way of keeping the energy consumption to a minimum is highly desirable but continues to be a real challenge in practice. Potential areas to explore for achieving this include the possibility of optimising the module design parameters and/or the associated operating parameters. This research focuses on this precise aim by evaluating the impact of the design characteristics of membrane length, width, and feed channel height on the total energy consumption for two selected pilot-plant RO process configurations for the removal of chlorophenol from wastewater. The proposed two configurations, with and without an energy recovery device (ERD), consist of four cylindrical pressure vessels connected in series and stuffed with spiral wound membranes. A detailed steady-state model developed earlier by the authors is used here to study such impact via repetitive simulation. The results achieved confirm that the overall energy consumption can be reduced by actually increasing the membrane width with a simultaneous reduction of membrane length at constant membrane area and module volume. Energy savings of more than 60% and 54% have been achieved for the two configurations with and without ERD respectively using process optimization. The energy savings are significantly higher compared to other available similar studies from the literature.
3

Numerical simulation studies of mass transfer under steady and unsteady fluid flow in two- and three-dimensional spacer-filled channels

Fimbres Weihs, Gustavo Adolfo, UNESCO Centre for Membrane Science & Technology, Faculty of Engineering, UNSW January 2008 (has links)
Hollow fibre and spiral wound membrane (SWM) modules are the most common commercially available membrane modules. The latter dominate especially for RO, NF and UF and are the focus of this study. The main difficulty these types of modules face is concentration polarisation. In SWM modules, the spacer meshes that keep the membrane leaves apart also help reduce the effects of concentration polarisation. The spacer filaments act as flow obstructions, and thus encourage flow destabilisation and increase mass transfer enhancement. One of the detrimental aspects of the use of spacers is an increase of pressure losses in SWM modules. This study analyses the mechanisms that give rise to mass transfer enhancement in narrow spacer-filled channels, and investigates the relationship between flow destabilisation, energy losses and mass transfer. It shows that the regions of high mass transfer on the membrane surface correlate mainly with those regions where the fluid flow is towards the membrane. Based on the insights gained from this analysis, a series of multi-layer spacer designs are proposed and evaluated. In this thesis, a Computational Fluid Dynamics (CFD) model was used to simulate steady and unsteady flows with mass transfer in two- and three-dimensional narrow channels containing spacers. A solute with a Schmidt number of 600 dissolving from the wall and channel Reynolds numbers up to 1683 were considered. A fully-developed concentration profile boundary condition was utilised in order to reduce the computational costs of the simulations. Time averaging and Fourier analysis were performed to gain insight into the dynamics of the different flow regimes encountered, ranging from steady flow to vortex shedding behind the spacer filaments. The relationships between 3D flow effects, vortical flow, pressure drop and mass transfer enhancement were explored. Greater mass transfer enhancement was found for the 3D geometries modelled, when compared with 2D geometries, due to wall shear perpendicular to the bulk flow and streamwise vortices. Form drag was identified as the main component of energy loss for the flow conditions analysed. Implications for the design of improved spacer meshes, such as extra layers of spacer filaments to direct the bulk flow towards the membrane walls, and filament profiles to reduce form drag are discussed.
4

Relationship between biofilm removal and membrane performance using Dunedin reverse osmosis water treatment plant as a case study

Goldman, Joshua E 01 June 2007 (has links)
Membrane biofouling is a common occurrence in water treatment plants that utilize reverse osmosis (RO). As bacteria and biofilm material build up on the membrane surface, it becomes more difficult for clean water to permeate through the membrane, and more pressure is required to produce the same amount of water. When pressures become critically high, membranes must be cleaned. This process is expensive in terms of chemical cost, labor, and downtime. Even after membranes have been cleaned, they can re-foul quickly if the cleaning did not effectively remove the biofilm. The water treatment plant in Dunedin, FL, which uses RO for treating groundwater, has experienced membrane biofouling since it began operation in 1992. Without the means to systematically evaluate a multitude of cleaning strategies on the bench scale, cleaning optimization must be conducted on the production skid level, which restricts the evaluation of alternative protocols. This problem is typical for many RO plants. The objectives of this project are: (1) using a multi-level and systematic approach, develop cleaning strategies for biofouled membranes that will lead to improved cleaning and decreased operational costs; (2) develop other cleaning strategies that will add to the scientific knowledge base; (3) quantify the effects of improved protocols; and (4) determine the policy implications of developed protocols in terms of cost suitability to Dunedin and elsewhere in Florida. This project consists of three phases, with phases progressively more similar to the water production environment. In the first phase, a series of bench tests were performed in the laboratory. Fouled membrane swatches were soaked and agitated in different cleaning solutions for different lengths of time, at different temperatures and pH. Protein and carbohydrate assays were then performed on both the cleaning solution and the membrane swatch to determine which conditions yield most complete removal of protein and carbohydrate from the membrane surface. Results indicate that carbohydrate removal does not appear to depend strongly on pH or temperature. Protein removal increases with increasing pH and is slightly greater at higher temperatures. The second phase of testing employed a 4"x6" stainless steel flat-sheet module in which cleanings were performed under different conditions to document corresponding changes in water flux and salt rejection. Operational parameters were based on pertinent literature and optimization results from Phase 1. Results indicate that water flux increases in response to cleaning at increasing pHs and increasing temperatures with best performances occuring after 30 minutes of cleaning. Salt rejection appears to decrease with pH. The most effective cleaning protocols, determined through trials in Phases 1 and 2, were put to the test again in Phase 3 where cleanings were performed on a specially constructed single-element cleaning system (for 8.5" x 40" elements), designed to clean a membrane element in isolation. This phase also served as final verification of new cleaning protocols before implementation on the production scale. Results from this phase were inconclusive due to mechanical problems. A multi-level, systematic cleaning evaluation leads to better understanding of the dependence of biofilm material removal and membrane performance on critical factors such as temperature, pH, time of cleaning, and chemical dose, which results in improved cleaning protocols and ultimately cost savings to RO water utilities such as Dunedin.
5

Numerical simulation studies of mass transfer under steady and unsteady fluid flow in two- and three-dimensional spacer-filled channels

Fimbres Weihs, Gustavo Adolfo, UNESCO Centre for Membrane Science & Technology, Faculty of Engineering, UNSW January 2008 (has links)
Hollow fibre and spiral wound membrane (SWM) modules are the most common commercially available membrane modules. The latter dominate especially for RO, NF and UF and are the focus of this study. The main difficulty these types of modules face is concentration polarisation. In SWM modules, the spacer meshes that keep the membrane leaves apart also help reduce the effects of concentration polarisation. The spacer filaments act as flow obstructions, and thus encourage flow destabilisation and increase mass transfer enhancement. One of the detrimental aspects of the use of spacers is an increase of pressure losses in SWM modules. This study analyses the mechanisms that give rise to mass transfer enhancement in narrow spacer-filled channels, and investigates the relationship between flow destabilisation, energy losses and mass transfer. It shows that the regions of high mass transfer on the membrane surface correlate mainly with those regions where the fluid flow is towards the membrane. Based on the insights gained from this analysis, a series of multi-layer spacer designs are proposed and evaluated. In this thesis, a Computational Fluid Dynamics (CFD) model was used to simulate steady and unsteady flows with mass transfer in two- and three-dimensional narrow channels containing spacers. A solute with a Schmidt number of 600 dissolving from the wall and channel Reynolds numbers up to 1683 were considered. A fully-developed concentration profile boundary condition was utilised in order to reduce the computational costs of the simulations. Time averaging and Fourier analysis were performed to gain insight into the dynamics of the different flow regimes encountered, ranging from steady flow to vortex shedding behind the spacer filaments. The relationships between 3D flow effects, vortical flow, pressure drop and mass transfer enhancement were explored. Greater mass transfer enhancement was found for the 3D geometries modelled, when compared with 2D geometries, due to wall shear perpendicular to the bulk flow and streamwise vortices. Form drag was identified as the main component of energy loss for the flow conditions analysed. Implications for the design of improved spacer meshes, such as extra layers of spacer filaments to direct the bulk flow towards the membrane walls, and filament profiles to reduce form drag are discussed.
6

Experimental Characterisation and Modelling of a Membrane Distillation Module Coupled to aFlat Plate Solar Collector Field

d’ Souza, David January 2018 (has links)
An experimental characterisation of a pre-commercial spiral wound permeate gap membrane distillation module was carried out to test its performance at different operating conditions for the purpose of seawater desalination. The experimental setup consisted of a flat plate solar collector field indirectly coupled to the permeate gap membrane distillation module via an inertia tank. The operating parameters varied were the condenser inlet temperature (from 20 °C to 30 °C), evaporator inlet temperature (from 60 °C to 80 °C) and seawater feed flow rate (from 200 l/h to 400 l/h). Within this operational boundary, it was found that the maximum permeate/distillate flux was 4.135 l/(h∙m2) which equates to a distillate production/flow rate of close to 21.3 l/h. The maximum potential distillate production rate is expected to be significantly higher than this value though as the maximum manufacturer specified feed flow rate is 700 l/h and the maximum evaporator inlet temperature is rated at 90 °C. Both these parameters are positively related to the distillate production rate. The minimum specific thermal energy consumption was found to be 180 kWh/m3. A mathematical model of the overall system was developed, and experimentally validated, to mathematically describe the coupling of the membrane distillation module with a solar collector field. The effectiveness of internal heat recovery of the membrane distillation module was found to be an accurate and simple tool to evaluate the thermal energy demand of the distillation process at a given set of operation parameters. The mathematical model was used to further investigate the experimental findings and provide insights into the operational dynamics of the membrane distillation module. It was also used to determine some external conditions required for steady state operation, at a given distillation operating point, such as the minimum solar irradiation required for operation and the auxiliary cooling required in the solar collector loop for maintaining steady state conditions. Finally, general guidelines are provided toward better operational practices to improve the coupling of a solar thermal collector unit/field with a membrane distillation system using a storage tank or inertia tank.
7

Facilitated Transport Membranes for Fuel Utilization Enhancement for Solid Oxide Fuel Cells and Carbon Capture from Flue Gas

Chen, Kai January 2020 (has links)
No description available.
8

Model Based Simulation and Genetic Algorithm Based Optimisation of Spiral Wound Membrane RO Process for Improved Dimethylphenol Rejection from Wastewater.

Al-Obaidi, Mudhar A.A.R., Ruiz-Garcia, A., Hassan, G., Li, Jian-Ping, Kara-Zaitri, Chakib, Nues, I., Mujtaba, Iqbal M. 28 March 2022 (has links)
Yes / Reverse Osmosis (RO) has already proved its worth as an efficient treatment method in chemical and environmental engineering applications. Various successful RO attempts for the rejection of organic and highly toxic pollutants from wastewater can be found in the literature over the last decade. Dimethylphenol is classified as a high-toxic organic compound found ubiquitously in wastewater. It poses a real threat to humans and the environment even at low concentration. In this paper, a model based framework was developed for the simulation and optimisation of RO process for the removal of dimethylphenol from wastewater. We incorporated our earlier developed and validated process model into the Species Conserving Genetic Algorithm (SCGA) based optimisation framework to optimise the design and operational parameters of the process. To provide a deeper insight of the process to the readers, the influences of membrane design parameters on dimethylphenol rejection, water recovery rate and the level of specific energy consumption of the process for two different sets of operating conditions are presented first which were achieved via simulation. The membrane parameters taken into consideration include membrane length, width and feed channel height. Finally, a multi-objective function is presented to optimise the membrane design parameters, dimethylphenol rejection and required energy consumption. Simulation results affirmed insignificant and significant impacts of membrane length and width on dimethylphenol rejection and specific energy consumption, respectively. However, these performance indicators are negatively influenced due to increasing the feed channel height. On the other hand, optimisation results generated an optimum removal of dimethylphenol at reduced specific energy consumption for a wide sets of inlet conditions. More importantly, the dimethylphenol rejection increased by around 2.51% to 98.72% compared to ordinary RO module measurements with a saving of around 20.6% of specific energy consumption.
9

Development and Validation of N-nitrosamine Rejection Mathematical Model Using a Spiral-wound Reverse Osmosis Process

Al-Obaidi, Mudhar A.A.R., Kara-Zaitri, Chakib, Mujtaba, Iqbal January 2016 (has links)
Yes / In this paper, a one-dimensional mathematical model based on coupled differential and algebraic equations has been developed for analysing the separation mechanism of a N-nitrosamine in a spiral-wound reverse osmosis process. The model is based on Spiegler and Kedem’s work on mass transport and Darcy’s law and concentration polarization to analyse the pressure drop and mass transfer coefficient in the module feed channel respectively. The model is built using the gPROMS software suite and validated using N-nitrosamine rejection experimental data from the literature, obtained by using a pilot-scale cross-flow reverse osmosis filtration system. Analysis results derived from the model corroborate experimental data.
10

Model based simulation and genetic algorithm based optimisation of spiral wound membrane RO process for improved dimethylphenol rejection from wastewater

Al-Obaidi, Mudhar A.A.R., Ruiz-Garcia, A., Hassan, G., Li, Jian-Ping, Kara-Zaitri, Chakib, Nuez, I., Mujtaba, Iqbal 31 March 2022 (has links)
Yes / Reverse Osmosis (RO) has already proved its worth as an efficient treatment method in chemical and environmental engineering applications. Various successful RO attempts for the rejection of organic and highly toxic pollutants from wastewater can be found in the literature over the last decade. Dimethylphenol is classified as a high-toxic organic compound found ubiquitously in wastewater. It poses a real threat to humans and the environment even at low concentration. In this paper, a model based framework was developed for the simulation and optimisation of RO process for the removal of dimethylphenol from wastewater. We incorporated our earlier developed and validated process model into the Species Conserving Genetic Algorithm (SCGA) based optimisation framework to optimise the design and operational parameters of the process. To provide a deeper insight of the process to the readers, the influences of membrane design parameters on dimethylphenol rejection, water recovery rate and the level of specific energy consumption of the process for two different sets of operating conditions are presented first which were achieved via simulation. The membrane parameters taken into consideration include membrane length, width and feed channel height. Finally, a multi-objective function is presented to optimise the membrane design parameters, dimethylphenol rejection and required energy consumption. Simulation results affirmed insignificant and significant impacts of membrane length and width on dimethylphenol rejection and specific energy consumption, respectively. However, these performance indicators are negatively influenced due to increasing the feed channel height. On the other hand, optimisation results generated an optimum removal of dimethylphenol at reduced specific energy consumption for a wide sets of inlet conditions. More importantly, the dimethylphenol rejection increased by around 2.51% to 98.72% compared to ordinary RO module measurements with a saving of around 20.6% of specific energy consumption.

Page generated in 0.0526 seconds