Spelling suggestions: "subject:"espiral found"" "subject:"espiral sound""
21 |
Removal of phenol from wastewater using spiral-wound reverse osmosis process: model development based on experiment and simulationAl-Obaidi, Mudhar A.A.R., Kara-Zaitri, Chakib, Mujtaba, Iqbal 31 May 2017 (has links)
Yes / The removal of the ubiquitous phenol and phenolic compounds in industrial wastes is a critical environmental issue due to their harmful threats to wildlife and potential adverse human health effects. The removal of such compounds is therefore of significant importance in water treatment and reuse. In recent years, reverse osmosis (RO) has been successfully utilised in several industrial processes and wastewater treatment including phenol removal. In this paper, a new model based on a spiral-wound RO process is developed for the removal of phenol from wastewater. A simplified mathematical algorithm using an irreversible thermodynamic approach is developed. This results in a set of non-linear Differential and Algebraic Equations (DAEs), which are solved based on a number of optimised model parameters using a combined methodology of parameter estimation and experimental phenol-water data derived from the literature. The effects of several operational parameters on the performance (in terms of removal of phenol) of the process are explored using the model.
|
22 |
Performance evaluation of multi-stage reverse osmosis process with permeate and retentate recycling strategy for the removal of chlorophenol from wastewaterAl-Obaidi, Mudhar A.A.R., Kara-Zaitri, Chakib, Mujtaba, Iqbal 11 October 2018 (has links)
Yes / Reverse Osmosis (RO) is one of the most widely used technologies for wastewater treatment for the removal of toxic impurities, such as phenol and phenolic compounds from industrial effluents. In this research, performance of multi-stage RO wastewater treatment system is evaluated for the removal of chlorophenol from wastewater using model-based techniques. A number of alternative configurations with recycling of permeate, retentate, and permeate-retentate streams are considered. The performance is measured in terms of total recovery rate, permeate product concentration, overall chlorophenol rejection and energy consumption and the effect of a number of operating parameters on the overall performance of the alternative configurations are evaluated. The results clearly show that the permeate recycling scheme at fixed plant feed flow rate can remarkably improve the final chlorophenol concentration of the product despite a reduction in the total recovery rate.
|
23 |
Performance of reverse osmosis based desalination process using spiral wound membrane: Sensitivity study of operating parameters under variable seawater conditionsAladhwani, S.H., Al-Obaidi, Mudhar A.A.R., Mujtaba, Iqbal 28 March 2022 (has links)
Yes / Reverse Osmosis (RO) process accounts for 80% of the world desalination capacity. Apparently, there is a rapid increase of deploying the RO process in seawater desalination due to its high efficiency in removing salts at a reduced energy consumption compared to thermal desalination technologies such as MSF and MED. Among different types of membranes, spiral would membranes is one of the most used. However, there is no in-depth study on the performance of spiral wound membranes in terms of salt rejection, water quality, water recovery and specific energy consumption subject to wide range of seawater salinity, temperature, feed flowrate and pressure using a high fidelity but a realistic process model which is therefore is the focus of this study. The membrane is subjected to conditions within the manufacturer's recommendations. The outcome of this research will certainly help the designers selecting optimum RO network configuration for a large-scale desalination process.
|
24 |
Scope and limitations of modelling, simulation, and optimisation of a spiral wound reverse osmosis process-basedwater desalinationAlsarayreh, Alanood A., Al-Obaidi, Mudhar A.A.R., Patel, Rajnikant, Mujtaba, Iqbal 31 March 2022 (has links)
Yes / The reverse osmosis (RO) process is one of the best desalination methods, using membranes to reject several impurities from seawater and brackish water. To systematically perceive the transport phenomena of solvent and solutes via the membrane texture, several mathematical models have been developed. To date, a large number of simulation and optimisation studies have been achieved to gauge the influence of control variables on the performance indexes, to adjust the key variables at optimum values, and to realise the optimum production indexes. This paper delivers an intensive review of the successful models of theROprocess and both simulation and optimisation studies carried out on the basis of the models developed. In general, this paper investigates the scope and limitations of the RO process, as well as proving the maturity of the associated perspective methodologies.
|
25 |
Ultrasonication of Spiral Wound Membranes to Mitigate Fouling in Reverse Osmosis / Ultraljudsbehandling av spirallindat membran för att reducera igenslamning vid omvänd osmosDiklev, Eliot January 2022 (has links)
Syftet med den här studien var att undersöka en alternativ slamningsreducerande teknik till spolning, som effektivt kan ta bort biologisk påväxt. Ultraljud undersöktes som en möjlig metod för att ta bort igenslamningen från omvänd osmos med ett spirallindat membran. Tidigare forskning har föreslagit att ultraljud skulle kunna vara effektivt på platta membran men inte på spirallindade membran, på grund av packningsdensiteten som spirallindan medför. Därför genomfördes inom denna studie försök med spirallindade membran och ultraljud, för att få en förståelse av dess effekter inom det spirallindade membranet. För det första undersöktes tidsberoendet av ultraljud, vilket visade liknande resultat som tidigare forskning, att ultraljudet uppnådde effekt inom några minuter. För det andra behandlades två membran en gång om dagen under 12 dagar, med undantag för dag 6 och 7. Ett behandlades med ultraljud och ett med spolning, och den mikrobiologiska kontamineringen i permeatet analyserades sedan. Det ultraljudsbehandlade membranet producerade mindre kontaminering under de 12 dagarna. Det krävs dock fler experiment och analyser för att bekräfta detta, eftersom tidsbegränsningar inte möjliggjorde repetitioner. En ekonomisk utvärdering genomfördes också för att undersöka möjligheten att implementera ultraljud i kommersiell skala. Den ekonomiska aspekten är en avvägning mellan vattenkostnad och energikostnad, som är beroende av geografiskt läge. Överlag indikerar resultaten att det sparade vattnet kostar mer än den energi som krävs, vilket är fördelaktigt för implementering av ultraljudsbehandling. Sammanfattningsvis visade ultraljudsbehandlingen bättre resultat än spolning inom några minuter, och hade även en ekonomisk fördel, men kostnaden för energi till vatten är beroende av geografisk plats. / The purpose of this study was to investigate an alternative fouling mitigation technique to flushing, that can efficiently remove biological fouling. Ultrasound was investigated as a possible method of removing fouling from a reverse osmosis spiral wound membrane. Previous research had suggested ultrasound to be efficient on flat sheet membranes but not on spiral wound membranes, due to the packing density. Therefore, this study conducted experiments on spiral wound membranes with ultrasound, as to get an understanding of its effects within the spiral wound membrane. Firstly, the time dependency of ultrasound was investigated, and showed similar results to that of previous research, that the ultrasound was efficient within a matter of minutes. Secondly, two membranes were subject to treatment once a day over the span of 12 days, with an exception for days 6 and 7. One was treated with ultrasound and one with flushing, and the microbiological contamination in the permeate was then analysed. The ultrasonically treated membrane produced less contamination throughout the 12 days. However, more experiments and analysis would be required to confirm this, as time constraints did not allow for repetitions. An economic assessment was also performed, as to evaluate the feasibility implementing ultrasound on a commercial scale. This is a weigh-off between water cost and energy cost, which is dependent on geographical location. Overall, the results indicate that the water saved costs more than the energy required though, which is favourable for the implementation of ultrasonic treatment. To conclude, the ultrasonic treatment showed better results than flushing within a matter of minutes, and also economically had an advantage but the cost of energy to water is relative to geographical location.
|
26 |
Modelling, Simulation, and Optimisation of Reverse Osmosis Process with Application in Wastewater Treatment and Food ProcessingAl-Obaidi, Mudhar A.A.R. January 2018 (has links)
Reverse Osmosis (RO) is a membrane-based separation process applied in several industrial and food processing applications. In this research, performance of RO process is investigated in respect of two applications (a) wastewater treatment (b) concentration fruit juices using model-based techniques. For this purpose, a number of models (both 1 and 2-dimensional steady state and dynamic) for spiral wound RO process are developed based on Solution-Diffusion model and Irreversible Thermodynamic model. The models are validated against actual experimental data reported in the literature before being used in further simulation and optimisation studies for both wastewater treatment and fruit juice concentration. Wastewater effluents of many industrial applications contain a variety of micro-pollutants and highly-toxic compounds, which are released into a variety of water resources. Such pollutants not only disrupt the biological ecosystem, but they also pose a real threat to the water supply for human consumption and to the aquatic ecosystems. The earlier chapters of the thesis evaluate the performance of RO process in terms of removal efficiency of toxic compounds such as chlorophenol, N-nitrosamine, etc. from wastewater. The effect of several operating parameters such as feed pressure, concentration, flow rate and temperature, on the performance of RO process are evaluated. Also, suitability of a number of different RO configurations for efficient removal of toxic compounds are evaluated. For example, (a) two-stage/two-pass RO design synthesis of RO network for the removal of chlorophenol (b) multistage multi-pass RO process with and without energy recovery option for the removal of N-nitrosamine are investigated. The dynamic response of the RO process for step changes in the operating parameters is investigated for the removal of phenolic compounds. Finally, in the context of wastewater treatment, a case study with multi compounds contaminants is suggested where a multi-objective optimisation problem has achieved the optimum rejection of all the compounds and recovery rate. In respect of food processing, RO has been considered as a prominent process in fruit juice concentration due to its ability to effectively retain the flavour, sensory, aroma and nutritional characteristics and concentrate the juice. This research elucidates one example of apple juice concentration process and focuses on highlighting successful modelling and optimisation methodology. This in turn provides an efficient method of RO process for concentrating apple juice by improving the reliability and efficiency of the underlying separation and concentration process. / Ministry of High Education and Scientific Research of Iraq
|
27 |
Biofouling of membrane systems: characterization and impact of pre-treatmentSiebdrath, Nadine 15 March 2019 (has links)
Unrestricted use of reclaimed secondary effluents for irrigation is a major goal in countries suffering from water shortage. Reverse osmosis desalination is used to provide high quality waters with reduced salinity. In order to allow water production with high economic efficiency, fouling in the membrane installation needs to be minimized. Biofouling, caused by microorganisms synthesizing high-molecular biofilms, is of major concern. Biofouling reduces the water production rate and thus increases the costs of the process. Deeper knowledge on its formation and its impact on membrane performance is needed. This is relevant especially for large-scale treatment plants, where process conditions change over length and time and influencing factors on fouling formation occur in combination. Thus, in the present thesis a membrane test cell was developed which enables the investigation of biofouling under validated, representative conditions of full-scale modules. Biofouling was studied in order to determine its impact on membrane performance. Also, appropriate, cost-effective pre-treatment prior to the reverse osmosis process minimizes fouling. Therefore, biofiltration and its suitability as stand-alone pre-treatment was studied when reusing secondary effluents with reverse osmosis.
The developed membrane test cell of 1 m length can be assembled with further test cells to simulate a spiral wound module alone, as well as several modules in series in a pressure pipe. The test set-up enables the systematic study of fouling formation integrative over the full length of industrial spiral wound modules. All performance parameters (feed channel pressure drop, permeability/flux, and salt passage) can be monitored over the full length and locally connected to accumulated foulants (non-destructive fouling diagnosis). Validation studies demonstrated that the hydraulic conditions (relationship between pressure drop and flow velocity, as well as the flow profile) are exactly as in real spiral wound modules. Each test cell is a representative, validated system of full-scale dimensions and hydraulics. It was further found that for fouling formation investigations, feed spacers with the same thickness as the feed channel height need to be used. In this way, accurate experimental measurements, especially of feed channel pressure drop, are ensured.
With the developed test cells, the impact of biofouling on membrane performance was determined under conditions similar to practice. Biofouling resulted in a decline of all membrane performance parameters. Feed channel pressure drop was affected earliest and most severely, indicating its suitability as a sensitive biofouling monitoring parameter. Salt rejection was moderately impacted by biofouling and influenced by several process parameters, reducing its applicability as monitoring parameter. It was further found, that most biofilm accumulated in the lead parts of the membrane test cells with a declining gradient towards the tail sections. The gradient of biofouling over the length of the membrane installation was directly referred to the declining availability of easily assimilable substrate. It emphasizes the importance to reduce the concentration of biodegradable nutrients in the feed to the membrane installation as suitable strategy to restrict biofouling. The high amount of biofilm deposits in the lead parts caused feed channel pressure drop increase over the lead test cell and affected negatively the performance of the downstream test cells: The tail test cells showed a moderate decline for the permeability (flux) and salt rejection.
Biofiltration improved the quality of secondary effluents as tertiary treatment. It successfully reduced the load of substances (microbes, dissolved organic matter, biopolymers, particles) reportedly contributing to fouling of subsequent membrane processes. Especially biopolymers of secondary effluents, which are major membrane foulants, were identified to be completely biodegradable. The biopolymers were estimated to be of colloidal size. Yet, the removal of these organics was suggested to be completely caused by biodegradation; neither filtration nor adsorption mechanisms played a role to retain biopolymers and dissolved organic carbon within the biofilter. However, a combined study of biofiltration and reverse osmosis revealed, that the improving effect of biofiltration as pre-treatment on membrane performance was lower than expected. Although, both biofouling and organic fouling were reduced on the reverse osmosis membrane, only marginal improvement on performance parameters was found. The adsorption of small non-biodegradable substances on the membrane as an organic fouling layer in the early stages of the process, as well as the difference in fouling layer composition were probably reasons for the findings. Thus, the successful application of biofiltration as pre-treatment is highly depending on the feed water source and the foulant layer formation. For the present case biofiltration as stand-alone pre-treatment is not recommended; a combination of biofiltration with subsequent e.g. flocculation and UF could be more beneficial.
|
28 |
Modifikace utěsnění průlezu kompenzátoru objemu VVER 1000 / The flange gasket modification of VVER 1000 pressurizer manholeŠvaříček, Tomáš January 2011 (has links)
The main purpose of this thesis is the modification of the original flange gasket of the VVER1000 pressurizer manhole. Then the construction and function of the pressurizer itself is described, together with detailed calculations of the original and new modified gasket to meet the ČSN EN 1591 standard together with a description of the legislation that has to be followed in the calculations. The comparisons of both gasket types together with main conclusions are placed in the last section of this thesis.
|
29 |
CO2 (H2S)-SELECTIVE MEMBRANES FOR FUEL CELL HYDROGEN PURIFICATION AND FLUE GAS CARBON CAPTURE:AN EXPERIMENTAL AND PROCESS MODELING STUDYRamasubramanian, Kartik 15 October 2013 (has links)
No description available.
|
Page generated in 0.0327 seconds