Spelling suggestions: "subject:"sputtered ZTO"" "subject:"aputtered ZTO""
1 |
Investigation of oxide semiconductor based thin films : deposition, characterization, functionalization, and electronic applicationsRajachidambaram, Meena Suhanya 06 January 2013 (has links)
Nanostructured ZnO films were obtained via thermal oxidation of thin films formed with metallic Zn-nanoparticle dispersions. Commercial zinc nanoparticles used for this work were characterized by microscopic and thermal analysis methods to analyze the Zn-ZnO core shell structure, surface morphology and oxidation characteristics. These dispersions were spin-coated on SiO₂/Si substrates and then annealed in air between 100 and 600 °C. Significant nanostructural changes were observed for the resulting films, particularly those from larger Zn nanoparticles. These nanostructures, including nanoneedles and nanorods, were likely formed due to fracturing of ZnO outer shell due to differential thermal expansion between the Zn core and the ZnO shell. At temperatures above 227 °C, the metallic Zn has a high vapor pressure leading to high mass transport through these defects. Ultimately the Zn vapor rapidly oxidizes in air to form the ZnO nanostructures. We have found that the resulting films annealed above 400 °C had high electrical resistivity. The zinc nanoparticles were incorporated into zinc indium oxide solution and spin-coated to form thin film transistor (TFT) test structures to evaluate the potential of forming nanostructured field effect sensors using simple solution processing.
The functionalization of zinc tin oxide (ZTO) films with self-assembled monolayers (SAMs) of n-hexylphosphonic acid (n-HPA) was investigated. The n-HPA modified ZTO surfaces were characterized using contact angle measurement, x-ray photoelectron spectroscopy (XPS) and electrical measurements. High contact angles were obtained suggesting high surface coverage of n-HPA on the ZTO films, which was also confirmed using XPS. The impact of n-HPA functionalization on the stability of ZTO TFTs was investigated. The n-HPA functionalized ZTO TFTs were either measured directly after drying or after post-annealing at 140 °C for 48 hours in flowing nitrogen. Their electrical characteristics were compared with that of non-functionalized ZTO reference TFTs fabricated using identical conditions. We found that the non-functionalized devices had a significant turn-on voltage (V[subscript ON]) shift of ~0.9 V and ~1.5 V for the non-annealed and the post-annealed conditions under positive gate bias stress for 10,000 seconds. The n-HPA modified devices showed very minimal shift in V[subscript ON] (0.1 V), regardless of post-thermal treatment. The VON instabilities were attributed to the interaction of species from the ambient atmosphere with the exposed ZTO back channel during gate voltage stress. These species can either accept or donate electrons resulting in changes in the channel conductance with respect to the applied stress. / Graduation date: 2012 / Access restricted to the OSU Community at author's request from Jan. 6, 2012 - Jan. 6, 2013
|
2 |
Evaluation of amorphous oxide semiconductors for thin film transistors (TFTs) and resistive random access memory (RRAM) applicationsRajachidambaram, Jaana Saranya 06 January 2013 (has links)
Thin-film transistors (TFTs) are primarily used as a switching element in liquid crystal
displays. Currently, amorphous silicon is the dominant TFT technology for displays, but
higher performance TFTs will become necessary to enable ultra-definition resolution
high-frequency large-area displays. Amorphous zinc tin oxide (ZTO) TFTs were
fabricated by RF magnetron sputter deposition. In this study, the effect of both deposition
and post annealing conditions have been evaluated in regards to film structure,
composition, surface contamination, and device performance. Both the variation of
oxygen partial pressure during deposition and the temperature of the post-deposition
annealing were found to have a significant impact on TFT properties. X-ray diffraction
data indicated that the ZTO films remain amorphous even after annealing to 600° C.
Rutherford backscattering spectrometry indicated that the Zn:Sn ratio of the films was
~1.7:1 which is slightly tin rich compared to the sputter target composition. X-ray
photoelectron spectroscopy data indicated that the films had significant surface
contamination and that the Zn:Sn ratios changed depending on sample annealing
conditions. Electrical characterization of ZTO films using TFT test structures indicated
that mobilities as high as 17 cm² V⁻¹ s⁻¹ could be obtained for depletion mode devices. It
was determined that the electrical properties of ZTO films can be precisely controlled by
varying the deposition conditions and annealing temperature. It was found that the ZTO
electrical properties could be controlled where insulating, semiconducting and conducting
films could be prepared. This precise control of electrical properties allowed us to
incorporate sputter deposited ZTO films into resistive random access memory (RRAM)
devices. RRAM are two terminal nonvolatile data memory devices that are very
promising for the replacement of silicon-based Flash. These devices exhibited resistive
switching between high-resistance states to low-resistance states and low-resistance states
to high-resistance states depending on polarity of applied voltages and current
compliance settings. The device switching was fundamentally related to the defect states
and material properties of metal and insulator layers, and their interfaces in the metalinsulator-metal (MIM) structure. / Graduation date: 2012 / Access restricted to the OSU Community at author's request from Jan. 6, 2012 - Jan. 6, 2013
|
Page generated in 0.0459 seconds