Spelling suggestions: "subject:"sputtring"" "subject:"sputtrring""
1 |
Study of GaN Based Nanostructures and HybridsForsberg, Mathias January 2016 (has links)
GaN and its alloys with Al and In belong to the group III nitride semiconductors and are today the materials of choice for efficient white light emitting diodes (LEDs) enabling energy saving solid state lighting. Currently, there is a great interest in the development of novel inexpensive techniques to fabricate hybrid LEDs combining high quality III-N quantum well (QW) structures with inexpensive colloidal nanoparticles or conjugated polymers. Such hybrid devices are promising for future micro-light sources in full-color displays, sensors and imaging systems. Organics can be engineered to emit at different wavelengths or even white light based on functional groups or by blend of several polymers. This is especially important for the green region, where there is still a lack of efficient LEDs. Besides optoelectronics, other applications such as biochemical sensors or systems for water splitting can be realized using GaN-based nanostructures. Despite a significant progress in the field, there is still a need in fundamental understanding of many problems and phenomena in III-nitride based nanostructures and hybrids to fully utilize material properties on demand of specific applications. In this thesis, hybrid structures based on AlGaN/GaN QWs and colloidal ZnO nano-crystals have been fabricated for down conversion of the QW emission utilizing non-radiative (Förster) resonant energy transfer. Time-resolved photoluminescence (TRPL) was used to investigate the QW exciton dynamics depending on the cap layer thickness in the bare QW and in the hybrid samples. Although the surface potential influences the exciton dynamics, the maximum pumping efficiency assuming a non-radiative energy transfer mechanism was estimated to be ~40 % at 60 K in the structure with thin cap layer of 3 nm. Since bulk GaN of large area is difficult to synthesize, there is a lack of native substrates. Thus, GaN-based structures are usually grown on SiC or sapphire, which results in high threading dislocation density in the active layer of the device and can be the reason of efficiency droop in GaN based LED structures. Fabricating GaN nanorods (NR) can be a way to produce GaN with lower defect density since threading dislocations can be annihilated toward the NR wall during growth. Here, GaN(0001) NRs grown on Si(111) substrates by magnetron sputtering using a liquid Ga target have been investigated. A high quality of NRs have been confirmed by transmission electron microscopy (TEM) and TRPL. Two strong near band gap emission lines at ~3.42 eV and ~3.47 eV related to basal plane stacking faults (SF) and donor-bound exciton (DBE), respectively, have been observed at low temperatures. TRPL properties of the SF PL line suggest that SFs form a regular structure similar to a multiple QWs, which was confirmed by TEM. The SF related PL measured at 5 K for a single NR has a significantly different polarization response compared to the GaN exciton line and is much stronger polarized (> 40 %) in the direction perpendicular to the NR growth axis. Hybrids fabricated using GaN NRs and the green emitting polyfluorene (F8BT) have been studied using micro-TRPL. In contrast to the DBE emission, the recombination time of the SF-related emission was observed to decrease, which might be due to the Förster resonance energy transfer mechanism. Compared to chemical vapor deposition, sputtering allows synthesis at much lower temperatures. Here, sputtering was employed to grow InAlN/GaN heterostructures with an indium content targeted to ~18 %, which is lattice matched to GaN. This means that near strain-free GaN films can be synthesized. It was found that using a lower temperature (~25 C) while depositing the top InAlN results in an improved interface quality compared to deposition at 700 C. In latter case, regions of quaternary alloy of InAlGaN forming structural micro-defects have been observed at the top InAlN/GaN interface in addition to optically active flower-like defect formations.
|
2 |
Growth and Characterization of Ti-Si-N Thin FilmsFlink, Axel January 2008 (has links)
Utvecklingen inom materialforskningen går mot att framställa avancerade material vilka är skräddarsydda för olika tillämpningar. Detta har medfört att det blir allt mer populärt att belägga ytor med ett eller flera tunna lager med syfte att förbättra materialegenskaperna. Användningsområden för ytbeläggningar går att hitta inom allt från vardagliga produkter såsom teflonbeläggningar av stekpannor, förgyllning av smycken till avancerad halvledarteknik för att åstadkomma energieffektiva lysdioder. Det enskilt största tillämpningsområdet för tunna filmer är dock som skyddande skikt för verktyg inom skärande bearbetning. Utvecklingen går stadigt mot högre skärhastigheter och därmed ökade temperaturer, idagsläget kan området där verktyget och arbetsmaterialet är i kontakt nå temperaturer på mellan 800-1000 °C utan att förlora nämnvärt i styrka. Detta har gjorts möjligt genom att belägga skären med någon eller några μm (tusendels mm) av lämpligt keramiskt material i avseende att öka motståndskraften för nötning vid bearbetning vid höga temperaturer. I den här avhandlingen har tunna filmer studerats med det övergripande målet att förbättra egenskaper hos verktyg för skärande metallbearbetning genom att öka motståndskraften hos materialen mot mekanisk och kemisk nötning vid höga temperaturer. Materialsystemet som undersökts är Ti-Si-N, där tunna filmer av både legeringar och tvåfassystem har syntetiserats och egenskapskarakteriserats. Legeringarna är belagda med varierande Si-halt från 0 till 10 atomprocent och avsedda för att studera strukturella, termiska och mekaniska egenskaper. De framställdes med en teknik som kallas arcförångning, där man i ett vakuumsystem frigör högenergetiskt material i det här fallet av Ti och Si som förångas från en solid yta kallad target. Atomerna joniseras genom kollisioner med elektroner och reagerar på sin väg mot substratet med kvävgas. Väl framme vid substratet, kondenserar jonerna och bilder den tunna filmen. Filmerna består av två strukturtyper, den första är en fast lösning där Si atomer upp till 5 at.% ersätter Ti atomer i TiN. I det andra fallet så segregerar Si till korngränserna. Värmebehandlingsexperiment visar att Si bildar SiNx som kapslar in TiN-korn vid temperaturer upp till 1000 °C. Hårdhetstester visar att filmerna bibehåller sin hårdhet upp till 1000 °C tack vare fasomvandlingen. Även vid 1100 °C är hårdheten hög. Dessa skikt besitter alltså egenskaper som gör dem väldigt användbara inom tillämpningar för skärande bearbetning. Nanostrukturerade materials egenskaper beror på dess mikrostruktur snarare än på de grundämnen som ingår, detta exemplifieras av TiN-SiNx-nanokompositer bestående av nanokristallina TiN-korn inbäddade i några få atomlager SiNx, där materialegenskaperna helt och hållet beror på kornstorleken på TiN-kornen och tjockleken på SiNx-lagren. Ökas tjockleken på SiNx minskar hårdheten. Dessa filmer har mycket goda mekaniska egenskaper och är ett av de hårdaste materialen som finns. Nyckeln till den höga hårdheten hos skikten ligger i att bilda starka bindningar mellan TiN och SiNx. Hur dessa ser ut vet man dock inte eftersom strukturen på SiNx gränsytan inte är känd. Anledningen är att den är svår att avbilda på grund av dess krökta form och begränsade volym. I denna avhandling har TiN/SiNx multilager belagts, dvs. en lagrad struktur TiN alternerad med SiNx. Dessa filmer framställdes med sputtring, en teknik som liknar arcförångning men där man istället accelerera positivt laddade joner mot Ti och Si targets med en hög negativ potential som frigör Ti och Si. I multilagren varierades SiNx-lagrets tjocklek mellan endast några få atomlager för att göra en förenklad modell av gränsytan hos nanokompositen och med atomupplöst transmissionselektronmikroskopi samt hårdhetsmätningar konstateras sedan att de hårdaste filmerna var de där kristallin SiNx stabiliseras mellan TiNkorn. Vidare studerar jag SiNx/TiN ytor med sveptunnelmikroskopi och täthetsfunktionalteori (en kvantmekanisk simuleringsmetod). Mina resultat visar SiNx och bindningarna till TiN är mycket mer komplicerade än vad man tidigare trott, då de kan vara kristallina och anta komplexa rekonstruktioner. Detta bidrar till den starka bindningen mellan TiN och SiNx vilket i sin tur förklarar varför materialen blir så hårda. / Ti-Si-N and Ti-Al-Si-N thin solid films have been studied by analytical electron microscopy, X-ray diffraction, scanning tunneling microscopy, X-ray photoelectron spectroscopy, elastic recoil detection analysis, nanoindentation, and ab initio calculations. I find that arc evaporated (Ti1-xSix)Ny films can be grown as cubic solid solutions up to x = 0.09 with a dense columnar microstructure. Films with higher Si content up to x = 0.20 assumes an extremely defect-rich, feather-like structure consisting of cubic TiN:Si nanocrystallite bundles with low-angle grain boundaries caused by thermodynamically driven Si segregation. Correspondingly, the N content in the films increases close to linear with the Si content from y = 1.00 (x = 0) to y = 1.13 (x = 0.20). Annealing of the films at 1000 °C yields a metastable crystalline SiNz (1.0 ≤ z ≤ 1.33) tissue phase in 0.04 ≤ x ≤ 0.20 films which is (semi)-coherent to TiN. These films are compositionally stable and exhibit retained hardness between 31-42 GPa up to 1000 °C. At 1100-1200 °C, the tissue phase amorphizes and all SiNz diffuse out of the films, followed by recrystallization of the cubic phase. Hard turning testing was performed on (Ti0.83Si0.17)N1.09. Analysis of the tool-chip interface prepared by focused ion beam revealed shear deformation in the film and an adhering layer consisting of the work-piece material and Si and N from the film. For (Ti0.33Al0.67)1-xSix)N (0 ≤ x ≤ 0.29) films the NaCl structure cubic (Ti,Al)N solid solution phase is predominant at low Si contents, which gradually changes to a dominating hexagonal wurtzite (Al,Ti,Si)N solid solution for 0.04 ≤ x ≤ 0.17. Additional Si results in amorphization. Annealing experiments at 600-1000 °C yields spinodal decomposition of c-(Al,Ti)N into c-AlN and c-TiN, with corresponding age hardening. The h-(Al,Ti,Si)N films exhibit precipitation of c- TiN with smaller volume than the host lattice, which results in tensile cracks formations and age hardening. Films with c-(Ti,Al)N perform best in turning applications, while films with h- (Al,Ti,Si)N form cracks and fail. Finally, I have characterized the nature of metastable crystalline SiNz phases and the interface between TiN(001) and SiNz. Magnetron sputtering was used to deposit TiN/SiNz(001) nanolaminate films with varying SiNz and TiN layer thicknesses. Maximum hardness is obtained when SiNz forms coherent interfaces with TiN. In addition, in situ surface analyses in combination with ab-initio calculations reveal that SiNz sub-monolayers grow epitaxially and form crystalline reconstructions on TiN(001) and TiN(111) surfaces. Phonon calculations predict that stoichiometric c-SiN is dynamically instable when the atoms are arranged in the NaCl and ZnS forms. However, c-Si3N4 can be stabilized with D022 or L12 ordered ZnS-like structures. These results have impact for the design of superhard nanocomposites and multilayer thin films.
|
Page generated in 0.0456 seconds